Solveeit Logo

Question

Question: The minimum value of \[{{2}^{\sin x}}+{{2}^{\cos x}}\]is: (a) \[{{2}^{1-\dfrac{1}{\sqrt{2}}}}\] ...

The minimum value of 2sinx+2cosx{{2}^{\sin x}}+{{2}^{\cos x}}is:
(a) 2112{{2}^{1-\dfrac{1}{\sqrt{2}}}}
(b) 21+12{{2}^{1+\dfrac{1}{\sqrt{2}}}}
(c) 22{{2}^{\sqrt{2}}}
(d) 22

Explanation

Solution

Hint: Use Arithmetic mean\left( AM \right)$$$$\ge Geometric mean(GM)\left( GM \right)between 2sinx{{2}^{\sin x}}and 2cosx{{2}^{\cos x}}.

Here we have to find the minimum value of 2sinx+2cosx{{2}^{\sin x}}+{{2}^{\cos x}}.
We know that
Arithmetic mean \ge Geometric mean
Or, AMGM....(i)AM\ge GM....\left( i \right)
For any two values, say aaand bb,
AM=a+b2AM=\dfrac{a+b}{2}
And GM=abGM=\sqrt{ab}
Considering a=2sinxa={{2}^{\sin x}}and b=2cosxb={{2}^{\cos x}}
We get AM=2sinx+2cosx2AM=\dfrac{{{2}^{\sin x}}+{{2}^{\cos x}}}{2}
And GM=2sinx.2cosxGM=\sqrt{{{2}^{\sin x}}{{.2}^{\cos x}}}
Also, am.an=am+n{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}
Therefore, GM=2sinx+cosxGM=\sqrt{{{2}^{\sin x+\cos x}}}
By putting value of AMAMand GMGMin equation (i)\left( i \right)
We get, 2sinx+2cosx22sinx+cosx\dfrac{{{2}^{\sin x}}+{{2}^{\cos x}}}{2}\ge \sqrt{{{2}^{\sin x+\cos x}}}
By cross multiplying, we get
=2sinx+2cosx2(2sinx+cosx)12={{2}^{\sin x}}+{{2}^{\cos x}}\ge 2{{\left( {{2}^{\sin x+\cos x}} \right)}^{\dfrac{1}{2}}}
We know that minimum value of
asinx+bcosx=a2+b2a\sin x+b\cos x=-\sqrt{{{a}^{2}}+{{b}^{2}}}
Therefore, minimum value of
sinx+cosx=12+12=2\sin x+\cos x=-\sqrt{{{1}^{2}}+{{1}^{2}}}=-\sqrt{2}
Therefore, minimum value of
2sinx+cosx=22{{2}^{\sin x+\cos x}}={{2}^{-\sqrt{2}}}
Hence, 2sinx+2cosx21(22)12{{2}^{\sin x}}+{{2}^{\cos x}}\ge {{2}^{1}}{{\left( {{2}^{-\sqrt{2}}} \right)}^{\dfrac{1}{2}}}
=2sinx+2cosx21.212={{2}^{\sin x}}+{{2}^{\cos x}}\ge {{2}^{1}}{{.2}^{-\dfrac{1}{\sqrt{2}}}}
We know that am.an=am+n{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}
Therefore, 2sinx+2cosx2(112){{2}^{\sin x}}+{{2}^{\cos x}}\ge {{2}^{\left( 1-\dfrac{1}{\sqrt{2}} \right)}}
Hence, 2sinx+2cosx{{2}^{\sin x}}+{{2}^{\cos x}}is always greater than or equal to 2(112){{2}^{\left( 1-\dfrac{1}{\sqrt{2}} \right)}}.
That means, the minimum value of 2sinx+2cosx{{2}^{\sin x}}+{{2}^{\cos x}}is 2(112){{2}^{\left( 1-\dfrac{1}{\sqrt{2}} \right)}}.
Therefore, option (a) is correct.

Note: In questions involving maxima and minima in trigonometry, students must try to use the approach
of AMGMAM\ge GM for once and not always try to solve the question only through trigonometric
equations and functions.