Solveeit Logo

Question

Mathematics Question on Geometric Progression

The minimum value of 2sinx+2cosx2^{\sin\, x} + 2^{\cos\, x} is

A

211/22^{1-1/\sqrt{2}}

B

21+1/22^{1+1/\sqrt{2}}

C

222^{\sqrt{2}}

D

22

Answer

211/22^{1-1/\sqrt{2}}

Explanation

Solution

We know that AMGMAM \geq GM 2sinx+2cosx22sinx2cosx\therefore \frac{2^{\sin x}+2^{\cos x}}{2} \geq \sqrt{2^{\sin x} 2^{\cos x}} 2sinx+2cosx22sinx+cosx\Rightarrow 2^{\sin x}+2^{\cos x} \geq 2 \sqrt{2^{\sin x+\cos x}} 2sinx+2cosx2×2sinx+cosx2\Rightarrow 2^{\sin x}+2^{\cos x} \geq 2 \times 2^{\frac{\sin x+\cos x}{2}} 2sinx+2cosx21+sinx+cosx2\Rightarrow 2^{\sin x}+2^{\cos x} \geq 2^{1+\frac{\sin x+\cos x}{2}} But sinx+cosx=2sin(x+π4)2\sin x+\cos x=\sqrt{2} \sin \left(x+\frac{\pi}{4}\right) \geq-\sqrt{2} 2sinx+2cosx2122\therefore 2^{\sin x}+2^{\cos x} \geq 2^{1-\frac{\sqrt{2}}{2}} 2sinx+2cosx2112,xR\Rightarrow 2^{\sin x}+2^{\cos x} \geq 2^{1-\frac{1}{\sqrt{2}}}, \forall x \in R Hence, minimum value is21122^{1-\frac{1}{2}}