Question
Mathematics Question on Geometric Progression
The minimum value of 2sinx+2cosx is
A
21−1/2
B
21+1/2
C
22
D
2
Answer
21−1/2
Explanation
Solution
We know that AM≥GM ∴22sinx+2cosx≥2sinx2cosx ⇒2sinx+2cosx≥22sinx+cosx ⇒2sinx+2cosx≥2×22sinx+cosx ⇒2sinx+2cosx≥21+2sinx+cosx But sinx+cosx=2sin(x+4π)≥−2 ∴2sinx+2cosx≥21−22 ⇒2sinx+2cosx≥21−21,∀x∈R Hence, minimum value is21−21