Question
Question: The minimum radius vector of the curve \(\frac { a ^ { 2 } } { x ^ { 2 } } + \frac { b ^ { 2 } } { y...
The minimum radius vector of the curve x2a2+y2b2=1 is of
Length
A
(a-b)
B
(a+b)
C
2(a+b)
D
) None of
Answer
(a+b)
Explanation
Solution


r=x2+y2
By the even expression r2a2sec2ϕ+r2b2cosec2ϕ=1
r2=a2sec2ϕ+b2cosec2ϕ= ⇒ r2=z
dϕdz =

= 2a2sec2ϕtanϕ−2b2cosec2ϕcotϕ
for maxima & minima dϕdz=0
⇒ a2sec2ϕtanϕ=b2cosec2ϕcotϕ
tan4ϕ=a2b2 ⇒ tanϕ=ab or −ab

r2=a2⋅a(a+b)+b2⋅b(a+b)
r2=a2+b2+2ab
r=(a+b)