Solveeit Logo

Question

Physics Question on Oscillations

The minimum phase difference between two simple harmonic oscillations, y1=12sinωt+32cosωt \, \, \, \, \, \, \, \, y_1 =\frac{1}{2}sin \omega t +\frac{\sqrt 3}{2} cos \omega t y2=sinωt+cosωt \, \, \, \, \, \, \, \, \, \, \, y_2 =sin \omega t +cos \omega t is

A

7π12\frac{7\pi}{12}

B

π12\frac{\pi}{12}

C

π6-\frac{\pi}{6}

D

π6\frac{\pi}{6}

Answer

π12\frac{\pi}{12}

Explanation

Solution

Here y1=12sinωt+32cosωt \, \, \, \, \, \, \, y_1 =\frac{1}{2}sin \, \omega t +\frac{\sqrt 3}{2} cos \omega t
=cosπ3sinωt+sinπ3cosωt\, \, \, \, \, \, \, \, =cos\frac{\pi}{3}sin \omega t +sin \frac{\pi}{3}cos \omega t
y1=sin(ωt+π3)\therefore \, \, \, \, \, \, \, \, y_1 =sin \bigg(\omega t +\frac{\pi}{3}\bigg)
Similarly y2=2sin(ωt+π4) \, \, \, \, \, \, y_2 =\sqrt 2 sin \bigg(\omega t +\frac{\pi}{4}\bigg)
PhasedifferenceΔϕ=π3π4\therefore \, \, \, \, \, Phase \, difference \Delta \phi =\frac{\pi}{3}-\frac{\pi}{4}
=π12\, \, \, \, \, \, \, \, \, \, \, \, =\frac{\pi}{12}