Question
Question: The minimum length of radius vector of the curve \(\frac{a^{2}}{x^{2}} + \frac{b^{2}}{y^{2}}\)= 1 i...
The minimum length of radius vector of the curve
x2a2+y2b2= 1 is
A
|a – b|
B
|a + b|
C
2|a + b|
D
None of these
Answer
|a + b|
Explanation
Solution
r2cos2φa2+r2sin2φb2= 1 (Let x = r cosf, y = r sinf)
r2 = a2sec2f + b2cosec2f
Let r2 = z, z = a2sec2f + b2cosec2f
dφdz= a22 secf secf tanf – b2 2 cosec f cosec f cot f = 0
a2 sec2 f tan f = b2 cosec2 f cot f
tan4 f = a2b2 Ž tan f = ab or −ab
rmin2= a2(1+ab)+ b2(1+ba)= (a + b)2
\ rmin = |a + b|