Solveeit Logo

Question

Physics Question on Radioactivity

The minimum kinetic energy needed by an alpha particle to cause the nuclear reaction 716N+24He11H+819O^{16}_{7}\text{N} + ^{4}_{2}\text{He} \rightarrow ^{1}_{1}\text{H} + ^{19}_{8}\text{O} in a laboratory frame is n (in MeV). Assume that 716N^{16}_{7}\text{N} is at rest in the laboratory frame. The masses of 716N,24He,11H and 819O^{16}_{7}\text{N} , ^{4}_{2}\text{He} , ^{1}_{1}\text{H}\ \text{and}\ ^{19}_{8}\text{O} can be taken to be 16.006u,4.003u, 1.008u and 19.003u, respectively, where 1u=930MeVc−2. The value of n is ________

Answer

716N+24He11H+819O^{16}_{7}\text{N} + ^{4}_{2}\text{He} \rightarrow ^{1}_{1}\text{H} + ^{19}_{8}\text{O}
minimum kinetic energy

4v0 = 1v1 + 19v2 = 20v2 (For max loss of KE)
v0=v25v_0=\frac{v_2}{5}
E required =(1.008+19.00316.0064.003)×930=1.86= (1.008 + 19.003 – 16.006 – 4.003) × 930 = 1.86
124v021220v2=1.86\frac{1}{2}4v_0^2-\frac{1}{2}20v^2=1.86

124v0210v022520v2=1.86\frac{1}{2}4v_0^2-10\frac{v_0^2}{25}20v^2=1.86
2v0225v02=1.862v_0^2-\frac{2}{5}v_0^2=1.86

v02=1.86×58v_0^2=\frac{1.86\times5}{8}
KE=124v02=2v02=18.6×54\frac{1}{2}4v_0^2=2v_0^2=\frac{18.6\times5}{4}
=2.325=2.325