Solveeit Logo

Question

Physics Question on Friction

The minimum force required to move a body up an inclined plane of inclination 3030{}^\circ , is found to be thrice the minimum force required to prevent it from sliding down the plane. The coefficient of friction between the body and the plane is:

A

13\frac{1}{\sqrt{3}}

B

123\frac{1}{2\sqrt{3}}

C

133\frac{1}{3\sqrt{3}}

D

143\frac{1}{4\sqrt{3}}

Answer

123\frac{1}{2\sqrt{3}}

Explanation

Solution

From the relation, force required to move on the inclined plane is given by F1=mg(sinθ+μcosθ){{F}_{1}}=mg(sin\theta +\mu cos\theta ) ?(i) But, when the body slides down then force required to slide down is given by F2=mg(sinθμcosθ){{F}_{2}}=mg(sin\theta -\mu cos\theta ) ?(ii) (because force of friction acts opposite) The condition given F1=3F2{{F}_{1}}=3{{F}_{2}} ?(iii) Now, putting the values from (i) and (ii) Eqs. (iii), we obtain mg(sinθ+μcosθ)=3mg(sinθμcosθ)mg(sin\theta +\mu cos\theta )=3mg(sin\theta -\mu cos\theta ) sinθ+μcosθ=3sinθ3μcosθ\sin \theta +\mu \cos \theta =3\sin \theta -3\mu \cos \theta 2sinθ=4μcosθ2\sin \theta =4\mu \cos \theta μ=12tanθ\mu =\frac{1}{2}\tan \theta (given θ=30o\theta ={{30}^{o}} ) μ=12tan30o\mu =\frac{1}{2}\tan {{30}^{o}} μ=123\mu =\frac{1}{2\sqrt{3}}