Solveeit Logo

Question

Mathematics Question on Straight lines

The minimum area of the triangle formed by the variable line 3cosθx+4sinθy=123 \, \cos\,\theta \cdot x + 4 \,\sin \,\theta \cdot y = 12 and the co-ordinate axes is

A

144144

B

252\frac {25}{2}

C

494\frac {49}{4}

D

1212

Answer

1212

Explanation

Solution

Given equation of line is
x3cosθ+4sinθy=12x \cdot 3 \cos \theta+4 \,\sin \theta\, y=12
x(4/cosθ)+y(3/sinθ)=1..(i)\Rightarrow \frac{x}{(4 / \cos \theta)}+\frac{y}{(3 / \sin \theta)}=1\,\,\,\,\,\,..(i)
It intereset the coordinate axes at A(4cosθ,0)A\left(\frac{4}{\cos \theta}, 0\right) and
B(0,3sinθ)B\left(0, \frac{3}{\sin \theta}\right)
\therefore Area of ΔOAB\Delta O A B
Δ=12×4cosθ×3sinθ\Delta =\frac{1}{2} \times \frac{4}{\cos \theta} \times \frac{3}{\sin \theta}
=12sin2θ..(ii)=\frac{12}{\sin 2 \,\theta}\,\,\,\,\,\,\,\,..(ii)
Now, for area to be minimum,
sin2θ\sin 2\, \theta should be maximum i.e.,
sin2θ=1\sin 2 \,\theta=1
sin2θ1)(sin2θ1)\sin 2 \,\theta \mid \leq 1)\,\,\,\,\,\,\,\,\,(\because|\sin 2 \theta| \leq 1)
\therefore Minimum area
Δmin=121=12\Delta_{\min }=\frac{12}{1}=12