Solveeit Logo

Question

Mathematics Question on Ellipse

The minimum area of a triangle formed by any tangent to the ellipse x216+y281=1\frac{x^{2}}{16}+\frac{y^{2}}{81}=1 and the co-ordinate axes is :

A

12

B

18

C

26

D

36

Answer

36

Explanation

Solution

Let P(4cosθ,9sinθ)P (4 \cos \theta, 9 \sin \theta) be a point on ellipse
equation of tangent x4cosθ+y9sinθ=1\frac{x}{4} \cos \theta+\frac{y}{9} \sin \theta=1
Let A&B A \& B are point of intersection of tangent at PP with co-ordinate axes.


A(4cosθ,0)B(0,9sinθ)A \left(\frac{4}{\cos \theta}, 0\right) B \left(0, \frac{9}{\sin \theta}\right)
Area of ΔOAB=12(4cosθ)(9sinθ)=36sin2θ\Delta OAB =\frac{1}{2}\left(\frac{4}{\cos \theta}\right)\left(\frac{9}{\sin \theta}\right)=\frac{36}{\sin 2 \theta}
( Area )min=36(\text { Area })_{\min }=36 as sin2θ=1\sin 2 \theta=1