Solveeit Logo

Question

Question: The minimum and maximum value of \(f\left( x \right)=\sin \left( \cos x \right)+\cos \left( \sin x \...

The minimum and maximum value of f(x)=sin(cosx)+cos(sinx)π2xπ2f\left( x \right)=\sin \left( \cos x \right)+\cos \left( \sin x \right)\forall -\dfrac{\pi }{2}\le x\le \dfrac{\pi }{2} are respective,
A. cos1 and 1+sin1\cos 1\ and\ 1+\sin 1
B. sin1 and 1+cos1\sin 1\ and\ 1+\cos 1
C. cos1 and cos(12)+sin(12)\cos 1\ and\ \cos \left( \dfrac{1}{\sqrt{2}} \right)+\sin \left( \dfrac{1}{\sqrt{2}} \right)
D. None of these

Explanation

Solution

Hint: We will start by using the fact that at the point of minima and maxima the derivative of the function is zero. Then we will use the fact that ddx(sinx)=cosx and ddx(cosx)=sinx\dfrac{d}{dx}\left( \sin x \right)=\cos x\ and\ \dfrac{d}{dx}\left( \cos x \right)=-\sin x and chain rule to find the derivative of give function.

Complete step-by-step answer:
Now, we have to find the minimum and maximum value of f(x)=sin(cosx)+cos(sinx)π2xπ2f\left( x \right)=\sin \left( \cos x \right)+\cos \left( \sin x \right)\forall -\dfrac{\pi }{2}\le x\le \dfrac{\pi }{2}.
Now, we will differentiate the function and equate it to zero to find the critical points we will use the chain rule for finding derivative of the function as we know that according to chain rule ddxf(g(x))=ddxf(g(x))×ddx(g(x))\dfrac{d}{dx}f\left( g\left( x \right) \right)=\dfrac{d}{dx}f\left( g\left( x \right) \right)\times \dfrac{d}{dx}\left( g\left( x \right) \right)
Now, we have,
f(x)=sin(cosx)+cos(sinx)f\left( x \right)=\sin \left( \cos x \right)+\cos \left( \sin x \right)
We know that,
ddx(sinx)=cosx ddx(cosx)=sinx ddx(f(x))=ddx(sin(cosx))+ddx(cos(sinx)) =cos(cosx)(sinx)sin(sinx)(cosx) \begin{aligned} & \dfrac{d}{dx}\left( \sin x \right)=\cos x \\\ & \dfrac{d}{dx}\left( \cos x \right)=\sin x \\\ & \dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}\left( \sin \left( \cos x \right) \right)+\dfrac{d}{dx}\left( \cos \left( \sin x \right) \right) \\\ & =\cos \left( \cos x \right)\left( -\sin x \right)-\sin \left( \sin x \right)\left( \cos x \right) \\\ \end{aligned}
Since, we know that sin(x)=sinx\sin \left( -x \right)=-\sin x we get,
=cos(cosx)sinxsin(sinx)cosx=-\cos \left( \cos x \right)\sin x-\sin \left( \sin x \right)\cos x
Now, we know that critical points or points of minima and maxima are the points at which f(x)=0f'\left( x \right)=0. So, we have,
cos(cosx)sinxsin(sinx)cosx=0.........(1)-\cos \left( \cos x \right)\sin x-\sin \left( \sin x \right)\cos x=0.........\left( 1 \right)
Now, we know that sin(0)=0,cos(π2)=0\sin \left( 0 \right)=0,\cos \left( \dfrac{\pi }{2} \right)=0. So, we can see that equation (1) is satisfied for x=0 and x=π2x=0\ and\ x=\dfrac{\pi }{2} as sin(0)=0 and cos(π2)=0\sin \left( 0 \right)=0\ and\ \cos \left( \dfrac{\pi }{2} \right)=0.
Now, we have critical points of the function π2xπ2\forall -\dfrac{\pi }{2}\le x\le \dfrac{\pi }{2} as 0 only. So, now the value of function is,
f(0)=sin(cos0)+cos(sin0)f\left( 0 \right)=\sin \left( \cos 0 \right)+\cos \left( \sin 0 \right)
Now, we know that
sin0=0 and cos0=1\sin 0=0\ and\ \cos 0=1
So, we have,
f(0)=sin(1)+cos(0) =sin(1)+1 =1+sin1 \begin{aligned} & f\left( 0 \right)=\sin \left( 1 \right)+\cos \left( 0 \right) \\\ & =\sin \left( 1 \right)+1 \\\ & =1+\sin 1 \\\ \end{aligned}
Now, we will find the value at end point i.e.
f(π2)=sin(cos(π2))+cos(sinπ2)f\left( \dfrac{\pi }{2} \right)=\sin \left( \cos \left( \dfrac{\pi }{2} \right) \right)+\cos \left( \sin \dfrac{\pi }{2} \right)
Now, we know that,
cos(π2)=0 and sin(π2)=1\cos \left( \dfrac{\pi }{2} \right)=0\ and\ \sin \left( \dfrac{\pi }{2} \right)=1
So, we have,
f(π2)=sin(0)+cos(1) =0+cos(1) =cos(1) \begin{aligned} & f\left( \dfrac{\pi }{2} \right)=\sin \left( 0 \right)+\cos \left( 1 \right) \\\ & =0+\cos \left( 1 \right) \\\ & =\cos \left( 1 \right) \\\ \end{aligned}
Now, we know that 1>π41>\dfrac{\pi }{4} and after π4cosθ<sinθ\dfrac{\pi }{4}\cos \theta <\sin \theta . So, we have, 1+sin1>cos11+\sin 1>\cos 1.
Hence, the minimum and maximum value of function is cos1 and 1 + sin1 respectively. So, the correct option is (A).

Note: It is important to note that we have found the solution of the derivative of the given function analytically seeing that both terms will be zero when sinx=0\sin x=0 for all x belongs to [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]. Also, we have then find the maximum and minimum value by checking which value is smaller and finding the values at the end points of the range given i.e. π2xπ2-\dfrac{\pi }{2}\le x\le \dfrac{\pi }{2}. So, we have checked for x=π2x=\dfrac{\pi }{2}.