Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

The mid-point of the line segment joining the points (1,3)(-1, 3) and (8,32)\left(8, \frac{3}{2}\right) is:

A

(72,34)\left(\frac{7}{2}, -\frac{3}{4}\right)

B

(72,92)\left(\frac{7}{2}, \frac{9}{2}\right)

C

(92,34)\left(\frac{9}{2}, -\frac{3}{4}\right)

D

(72,94)\left(\frac{7}{2}, \frac{9}{4}\right)

Answer

(72,94)\left(\frac{7}{2}, \frac{9}{4}\right)

Explanation

Solution

The midpoint of a line segment joining two points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is given by the formula:

Mid-point=(x1+x22,y1+y22)\text{Mid-point} = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)

Substitute the given points (1,3)(-1, 3) and (8,3)(8, 3):

Mid-point=(1+82,3+32)=(72,62)\text{Mid-point} = \left( \frac{-1 + 8}{2}, \frac{3 + 3}{2} \right) = \left( \frac{7}{2}, \frac{6}{2} \right)

Simplify:
Mid-point=(72,3)\text{Mid-point} = \left( \frac{7}{2}, 3 \right)

Thus, the correct answer is:

Option  d) (72,94)Option\space d)\ \left( \frac{7}{2}, \frac{9}{4} \right)