Solveeit Logo

Question

Physics Question on simple harmonic motion

The metallic bob o fa simple pendulum has the relative density ρ\rho. The time period of this pendulum is T. If the metallic bob is immersed in water, then the new time period is given by.

A

T(ρ1ρ)T\left(\frac{\rho-1}{\rho}\right)

B

T(ρρ1)T\left(\frac{\rho}{\rho-1}\right)

C

Tρ1ρT\sqrt\frac{\rho-1}{\rho}

D

(Tρρ1)(T\sqrt\frac{\rho}{\rho-1})

Answer

(Tρρ1)(T\sqrt\frac{\rho}{\rho-1})

Explanation

Solution

* Relative density of Bob =ρ=\rho * Time period in water == ? Mgeff =σvgρwvg=(σρw)vgMg _{\text {eff }}=\sigma vg -\rho_{ w } \cdot vg =\left(\sigma-\rho_{ w }\right) \cdot vg σvgeff =(σρw)vg\sigma \cdot v \cdot g _{ \text{eff }}=\left(\sigma-\rho_{ w }\right) \cdot vg geff =(σρwσ)g=(ρ1ρ)g\Rightarrow g _{\text {eff }}=\left(\frac{\sigma-\rho_{ w }}{\sigma}\right) \cdot g =\left(\frac{\rho-1}{\rho}\right) \cdot g Time period T=2π1gT '=2 \pi \cdot \sqrt{\frac{1}{ g }} T=2π1g(pp1)T '=2 \pi \cdot \sqrt{\frac{1}{ g } \cdot\left(\frac{ p }{ p -1}\right)} =T(pp1)T= T \cdot \sqrt{\left(\frac{ p }{ p -1}\right)} T ' =Tpp1= T \cdot \sqrt{\frac{ p }{ p -1}}