Solveeit Logo

Question

Mathematics Question on Slope of a line

The medians ADAD and BEBE of a triangle with vertices A(0,b),B(0,0)A(0, b), B(0, 0) & C(a,0)C(a, 0) are perpendicular to each other, if

A

a=b2a = \frac{b}{2}

B

b=a2b = \frac{a}{2}

C

ab=1ab = 1

D

a=±2ba = \pm \sqrt{2} b

Answer

a=±2ba = \pm \sqrt{2} b

Explanation

Solution

We have,
BEBE and ADAD are the medians. So, EE and DD are the mid points of ACAC and BCBC respectively.


\therefore Coordinates of E=(a2,b2)E = \left( \frac{a}{2} , \frac{b}{2} \right)
and coordinates of D=(a2,0) D = \left( \frac{a}{2} , 0 \right)
Now, slope of median BE=m1=ba BE = m_1 = \frac{b}{a}
Also, slope of median AD=m2=2baAD = m_2 = \frac{-2b}{a}
Now, m1m_1 & m2m_2 are perpendicular if m1m2=1m_1\, m_2 = - 1
ba×2ba=1\Rightarrow \:\:\: \frac{b}{a} \times \frac{-2b}{a} = - 1
2b2=a2a=±2b\Rightarrow \:\:\: 2b^2 = a^2 \:\:\: \Rightarrow \:\: a = \pm \sqrt{2} b