Solveeit Logo

Question

Question: The mean value of the function ƒ(x) = \(\frac{1}{x^{2} + x}\)on the interval [1, 3/2] is –...

The mean value of the function ƒ(x) = 1x2+x\frac{1}{x^{2} + x}on the interval [1, 3/2] is –

A

log (6/5)

B

2 log (6/5)

C

4

D

log 3/5

Answer

2 log (6/5)

Explanation

Solution

Mean value = 1 ba\frac { 1 } { \mathrm {~b} - \mathrm { a } } abƒ(x)dx\int_{a}^{b}{ƒ(x)dx}

(Property 14)

= 13/21\frac { 1 } { 3 / 2 - 1 } 13/21x2+x\int_{1}^{3/2}\frac{1}{x^{2} + x}dx = 2 13/2[1x1x+1]\int_{1}^{3/2}\left\lbrack \frac{1}{x} - \frac{1}{x + 1} \right\rbrackdx

= 2 (log x – log (x  +1)13/2\left. \ + 1) \right|_{1}^{3/2}= 2 [log (3/2) – log

(5/2) – (log 1 – log 2)]

= 2 log (6/5)