Solveeit Logo

Question

Question: The mean of a set of observation is \(\bar { x }\). If each observation is divided by α, α ≠ 0 and t...

The mean of a set of observation is xˉ\bar { x }. If each observation is divided by α, α ≠ 0 and then is increased by 10, then the mean of the new set is

A

xˉα\frac { \bar { x } } { \alpha }

B

xˉ+10α\frac { \bar { x } + 10 } { \alpha }

C

xˉ+10αα\frac { \bar { x } + 10 \alpha } { \alpha }

D

αxˉ+10\alpha \bar { x } + 10

Answer

xˉ+10αα\frac { \bar { x } + 10 \alpha } { \alpha }

Explanation

Solution

Let x1,x2x _ { 1 } , x _ { 2 } ......,xnx _ { n } be n observations.

Then, let yi=xiα+10y _ { i } = \frac { x _ { i } } { \alpha } + 10

Then, 1ni=1nyi=1α\frac { 1 } { n } \sum _ { i = 1 } ^ { n } y _ { i } = \frac { 1 } { \alpha } (1nΣxi)+1n(10n)\left( \frac { 1 } { n } \Sigma x _ { i } \right) + \frac { 1 } { n } ( 10 n )

yˉ=1αxˉ+10\bar { y } = \frac { 1 } { \alpha } \bar { x } + 10 =xˉ+10αα= \frac { \bar { x } + 10 \alpha } { \alpha }.