Solveeit Logo

Question

Question: The mean of a set of 30 observations is 75. If each other observation is multiplied by a non-zero nu...

The mean of a set of 30 observations is 75. If each other observation is multiplied by a non-zero number λ\lambda and then each of them is decreased by 25, their mean remains the same. The λ\lambda is equal to
a) 103\dfrac{{10}}{3}
b) 43\dfrac{4}{3}
c) 13\dfrac{1}{3}
d) 23\dfrac{2}{3}

Explanation

Solution

Hint: In this question find the sum of observations using the mean formula,
mean=sum  of  observationtotal  observation{\rm{mean = }}\dfrac{{{\rm{sum \space of \space observation}}}}{{{\rm{total \space observation}}}}. Now, multiply each observation by ‘λ\lambda ’, and subtract by 25 and apply the same formula to find ‘λ\lambda ’ value.

Complete step-by-step answer:
Mean of a set of observations is given by,
mean=sum  of  observationtotal  observation{\rm{mean = }}\dfrac{{{\rm{sum \space of \space observation}}}}{{{\rm{total \space observation}}}}
i.e.,
a=a1+a2+a3+...+anna = \dfrac{{{a_1} + {a_2} + {a_3} + ... + {a_{\rm{n}}}}}{{\rm{n}}}
It is given that mean, a=75a = 75
Total observation, n=30n = 30
Then equation (1) becomes
75=a1+a2+a3+...+a3030\Rightarrow 75 = \dfrac{{{a_1} + {a_2} + {a_3} + ... + {a_{30}}}}{{30}}
a1+a2+a3+...+a30=75×30=2250\Rightarrow {a_1} + {a_2} + {a_3} + ... + {a_{30}} = 75 \times 30 = 2250
Now, we need to multiply by λ\lambda and subsequently subtract them with 25 for each observation then we get,
(a1λ25)+(a2λ25)+(a3λ25)+...+(a30λ25)30=75\Rightarrow \dfrac{{({a_1}\lambda - 25) + ({a_2}\lambda - 25) + ({a_3}\lambda - 25) + ... + ({a_{30}}\lambda - 25)}}{{30}} = 75
Here, the above equation has the same mean i.e., 75 as per the question.
In equation (3), 25 is repeated 30 times so equation (3) becomes,
a1λ+a2λ+a3λ+...+a30λ(25×30)30=75\Rightarrow \dfrac{{{a_1}\lambda + {a_2}\lambda + {a_3}\lambda + ... + {a_{30}}\lambda - (25 \times 30)}}{{30}} = 75
a1λ+a2λ+a3λ+...+a30λ75030=75\Rightarrow \dfrac{{{a_1}\lambda + {a_2}\lambda + {a_3}\lambda + ... + {a_{30}}\lambda - 750}}{{30}} = 75
On simplification,
a1λ+a2λ+a3λ+...+a30λ750=75×30\Rightarrow {a_1}\lambda + {a_2}\lambda + {a_3}\lambda + ... + {a_{30}}\lambda - 750 = 75 \times 30
a1λ+a2λ+a3λ+...+a30λ750=2250\Rightarrow {a_1}\lambda + {a_2}\lambda + {a_3}\lambda + ... + {a_{30}}\lambda - 750 = 2250
a1λ+a2λ+a3λ+...+a30λ=2250+750\Rightarrow {a_1}\lambda + {a_2}\lambda + {a_3}\lambda + ... + {a_{30}}\lambda = 2250 + 750
a1λ+a2λ+a3λ+...+a30λ=3000\Rightarrow {a_1}\lambda + {a_2}\lambda + {a_3}\lambda + ... + {a_{30}}\lambda = 3000
Taking λ\lambda common on LHS we get,
λ(a1+a2+a3+...+a30)=3000\Rightarrow \lambda ({a_1} + {a_2} + {a_3} + ... + {a_{30}}) = 3000
Substitute equation (2), we get,
λ(2250)=3000\Rightarrow \lambda (2250) = 3000
λ=30002250\Rightarrow \lambda = \dfrac{{3000}}{{2250}}
λ=43\Rightarrow \lambda = \dfrac{4}{3}
Thus, option (b) is the correct answer.

Note: Whenever we face such types of problems the key is to use mean or average concepts. This concept will help you to find out the solution easily.