Solveeit Logo

Question

Mathematics Question on Mean Deviation

The mean of 55 observations is 55 and their variance is 124124. If three of the observations are 1,21, 2 and 66 ; then the mean deviation from the mean of the data is :

A

2.4

B

2.8

C

2.5

D

2.6

Answer

2.8

Explanation

Solution

x=x1+x2+x3+x4+x55=5\overline{ x }=\frac{ x _{1}+ x _{2}+ x _{3}+ x _{4}+ x _{5}}{5}=5
i=15xi=25..(i)\displaystyle\sum_{ i =1}^{5} x _{ i }=25 \ldots \ldots \ldots . .( i )
Also σ2=124 \sigma^{2}=124
x125(x)2=124\Rightarrow \frac{\sum x _{1}^{2}}{5}-(\overline{ x })^{2}=124
x125=124+25=149\Rightarrow \frac{\sum x _{1}^{2}}{5}=124+25=149
(x12+x22+..+x52)=745\Rightarrow \left(x_{1}^{2}+x_{2}^{2}+\ldots . .+x_{5}^{2}\right)=745
x12+x22=704(ii)\Rightarrow x_{1}^{2}+x_{2}^{2}=704 \ldots \ldots \ldots (ii)
by (i) } x1+x2=16.(iii)x_{1}+x_{2}=16 \ldots \ldots \ldots \ldots . (iii)
2x1x2+704=2562 x_{1} x_{2}+704=256
x1x2=2567042x_{1} x_{2}=\frac{256-704}{2}
x1x2=128352=224x_{1} x_{2}=128-352=-224 \ldots \ldots \ldots \ldots (iv)
Now x155x15+x25+4+3+15\frac{\sum\left|x_{1}-5\right|}{5}-\frac{\left|x_{1}-5\right|+\left|x_{2}-5\right|+4+3+1}{5}
=8+x15+11x15=\frac{8+\left|x_{1}-5\right|+\left|11-x_{1}\right|}{5}
=8+65=2.8=\frac{8+6}{5}=2.8 Ans