Question
Question: The mean of \[13\] numbers is\[24\]. If \[3\] is added to each number what will the change in new me...
The mean of 13 numbers is24. If 3 is added to each number what will the change in new mean be?
Solution
First we will calculate the total sum of all the 13 numbers and then add 3 in the total for each number to find the new mean. From the new mean we will find the change in mean.
Formula used: Mean = Number of termsSum of the terms
Complete step-by-step solution:
Let N be the total number of terms in the distribution, S be the sum of all the terms and M be the mean of the terms.
It is given that M=24 and N=13
Now we use the formula that: M=NS
On substituting the given values, we get:
24=13S
On cross multiplying we get:
S=24×13
Let us multiply we get,
S=312
Therefore, we know that the total i.e. the sum of all the terms in the distribution is 312 therefore, S=312.
Now since 3 was added to all the numbers in the distribution and there are 13 numbers in the distribution, we will add 3 total 13 times to the sum S.
The new total S will become:
⇒S=312+3+3+3+3+3+3+3+3+3+3+3+3+3
On simplifying the equation, we get:
⇒S=351
Since the new Sum of terms is found, we find the new mean by using the formula:
M=NS
On substituting the values of S and N we get:
M=13351
On simplifying we get:
M=27
Now the older mean was 24 and the new mean is 27 therefore we now find the change in mean:
Change in mean =27−24
Change in mean =3
∴The change in mean is 3
Note: Whenever there is a same number added to all the distributive numbers then it can change in mean will always be the number which is added to all the distributive numbers, in this case the number was 3.