Solveeit Logo

Question

Mathematics Question on Mean Deviation

The mean and variance of a random variable XX having a binomial distribution are 44 and 22 respectively, find the value of P(X=1)P(X=1) .

A

1/41/4

B

1/161/16

C

1/81/8

D

1/321/32

Answer

1/321/32

Explanation

Solution

Given, mean, np=4np=4 ?.(i) Variance, npq=2npq=2 ?.(ii) npqnp=24\frac{npq}{np}=\frac{2}{4}
\Rightarrow q=12q=\frac{1}{2}
\therefore p=12p=\frac{1}{2} From Eq (i), we get n=41/2=8n=\frac{4}{1/2}=8 Now, P(X=1)=nC1p1qn1P(X=1){{=}^{n}}{{C}_{1}}{{p}^{1}}{{q}^{n-1}}
(12)1(12)7=8!1!7!×128=828=132{{\left( \frac{1}{2} \right)}^{1}}{{\left( \frac{1}{2} \right)}^{7}}=\frac{8!}{1!7!}\times \frac{1}{{{2}^{8}}}=\frac{8}{{{2}^{8}}}=\frac{1}{32}