Solveeit Logo

Question

Mathematics Question on Statistics

The mean and variance of a binomial distribution are α and α/3, respectively.
If P(X = 1) = 4/243 then P(X = 4 or 5) is equal to :

A

59\frac{5}{9}

B

6481\frac{64}{81}

C

1627\frac{16}{27}

D

145243\frac{145}{243}

Answer

1627\frac{16}{27}

Explanation

Solution

Given, mean = np = α.
variance
=npq=α3=npq =\frac{α}{3}
q=13and p=23⇒q=\frac{1}{3} and\ p=\frac{2}{3}
P(X=1)=n.p1.qn1=4243P(X=1)=n.p^1.q^{n−1}=\frac{4}{243}
n.23.(13)n1=4243⇒n.\frac{2}{3}.(\frac{1}{3})^{n−1}=\frac{4}{243}
n=6⇒n=6
P(X=4or5)=6C4.(23)4(13)2+6C5.(25)5.13P(X=4 or 5)=^6C_4.(\frac{2}{3})^4⋅(\frac{1}{3})^2+^6C_5.(\frac{2}{5})^5.\frac{1}{3}
=1627=\frac{16}{27}
So, the correct option is (C): 1627\frac{16}{27}