Solveeit Logo

Question

Mathematics Question on Statistics

The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.

Answer

Let the observations be x1, x2, x3, x4, x5, and x6.

It is given that mean is 8 and standard deviation is 4.

Meanxˉx1+x2+x3+x4+x5+x66=8.(1)Mean\,\bar{x}\frac{x_1+x_2+x_3+x_4+x_5+x_6}{6}=8 …….(1)

If each observation is multiplied by 3 and the resulting observations are yi, then

yi=3xi,i.e,x1=13yi,fori=1to6y_i=3x_i,i.e,x_1=\frac{1}{3}y_i,fori=1\,to\,6

Newmean,yˉy1+y2+y3+y4+y5+y66New mean,\bar{y}\frac{y_1+y_2+y_3+y_4+y_5+y_6}{6}

=(x1+x2+x3+x4+x5+x6)6=\frac{(x_1+x_2+x_3+x_4+x_5+x_6)}{6}

3×83×8 ....[(Using(1)] ....[(Using(1)]

=24=24

Standarddeviationσ=1nti16(xixˉ)2Standard\,deviation\,σ=√\frac{1}{n}\sum_{ti1}^6(x_i-\bar{x})^2

i=16(xixˉ)2=96\sum_{i=1}^6(x_i-\bar{x})^2=96 ....(2) ....(2)

From (1) and (2), it can be observed that,

yˉ=3xˉ\bar{y}=3\bar{x}

xˉ=13yˉ\bar{x}=\frac{1}{3}\bar{y}

Substituting the values of xi and xˉ\bar{x} in (2), we obtain

i=16(13yi13yˉ)2=96\sum_{i=1}^6(\frac{1}{3}y_i-\frac{1}{3}\bar{y})^2=96

i=16(yiyˉ)2=864\sum_{i=1}^6(y_i-\bar{y})^2=864

Therefore, variance of new observations = (16×864)=144(\frac{1}{6}×864)=144

Hence, the standard deviation of new observations is 144=12√144=12