Solveeit Logo

Question

Mathematics Question on Statistics

The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

(i) If wrong item is omitted.

(ii) If it is replaced by 12.

Answer

(i) Number of observations (n) = 20

Incorrect mean = 10

Incorrect standard deviation = 2

xˉ=1ni=120xi\bar{x}=\frac{1}{n}\sum_{i=1}^{20}x_i

10=120i=120xi10=\frac{1}{20}\sum_{i=1}^{20}x_i

i=120xi=200\sum_{i=1}^{20}x_i=200

That is, incorrect sum of observations = 200

Correct sum of observations = 200-8 = 192

Correctmean=Correctsum19=19219=10.1Correct\,mean=\frac{Correct\,sum}{19}=\frac{192}{19}=10.1

Standarddeviationσ=1ni=1nxi21n2(i=1nxi)2=1ni=12(xˉ)2Standard\,\, deviation\,σ=√\frac{1}{n}\sum_{i=1}^nx_i^2-\frac{1}{n^2}(\sum_{i=1}^nx_i)^2=√\frac{1}{n}\sum_{i=1}^2-(\bar{x})^2

2=120incorrecti=1nxi2(10)2⇒2=√\frac{1}{20}incorrect\,\sum_{i=1}^{n}x_i^2-(10)^2

4=120incorrecti=1nxi2100⇒4=\frac{1}{20}\,incorrect\,\sum_{i=1}^{n}x_i^2-100

incorrecti=1nxi2=2080incorrect\,\sum_{i=1}^{n}x_i^2=2080

Correcti=1nxi2=incorrecti=1nxi2(8)2Correct\,\sum_{i=1}^{n}x_i^2=incorrect\,\sum_{i=1}^{n}x_i^2-(8)^2

=208064=2080-64

=2016=2016

Correctstandarddeviation=Correctxi2n(Correctmean)2Correct \,standard \,deviation=\,√\frac{Correct\,\sum{x_i^2}}{n}-(Correct\,mean)^2

=201619(10.1)2=√\frac{2016}{19}-(10.1)^2

=106.1102.01=√106.1-102.01

=4.09=√4.09

=2.02

(ii) When 8 is replaced by 12,

incorrect sum of observations = 2

∴ Correct sum of observations = 200-8+12 = 204

Correctmean=Correctsum20=20420=10.2Correct\,mean=\frac{Correct\,sum}{20}=\frac{204}{20}=10.2

Standarddeviationσ=1ni=1nxi21n2(i=1nxi)2=1ni=12(xˉ)2Standard\,\, deviation\,σ=√\frac{1}{n}\sum_{i=1}^nx_i^2-\frac{1}{n^2}(\sum_{i=1}^nx_i)^2=√\frac{1}{n}\sum_{i=1}^2-(\bar{x})^2

2=120incorrecti=1nxi2(10)2⇒2=√\frac{1}{20}incorrect\,\sum_{i=1}^{n}x_i^2-(10)^2

4=120incorrecti=1nxi2100⇒4=\frac{1}{20}\,incorrect\,\sum_{i=1}^{n}x_i^2-100

incorrecti=1nxi2=2080incorrect\,\sum_{i=1}^{n}x_i^2=2080

Correcti=1nxi2=incorrecti=1nxi2(8)2+(12)2Correct\,\sum_{i=1}^{n}x_i^2=incorrect\,\sum_{i=1}^{n}x_i^2-(8)^2+(12)^2

208064+1442080-64+144

=2160=2160

Correctstandarddeviation=Correctxi2n(Correctmean)2Correct \,standard \,deviation=\,√\frac{Correct\,\sum{x_i^2}}{n}-(Correct\,mean)^2

=201620(10.2)2=√\frac{2016}{20}-(10.2)^2

=108104.04=√108-104.04

=3.96=√3.96

1.981.98