Question
Mathematics Question on Statistics
The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted.
(ii) If it is replaced by 12.
(i) Number of observations (n) = 20
Incorrect mean = 10
Incorrect standard deviation = 2
xˉ=n1∑i=120xi
10=201∑i=120xi
⇒ ∑i=120xi=200
That is, incorrect sum of observations = 200
Correct sum of observations = 200-8 = 192
∴ Correctmean=19Correctsum=19192=10.1
Standarddeviationσ=√n1∑i=1nxi2−n21(∑i=1nxi)2=√n1∑i=12−(xˉ)2
⇒2=√201incorrect∑i=1nxi2−(10)2
⇒4=201incorrect∑i=1nxi2−100
⇒ incorrect∑i=1nxi2=2080
∴ Correct∑i=1nxi2=incorrect∑i=1nxi2−(8)2
=2080−64
=2016
∴ Correctstandarddeviation=√nCorrect∑xi2−(Correctmean)2
=√192016−(10.1)2
=√106.1−102.01
=√4.09
=2.02
(ii) When 8 is replaced by 12,
incorrect sum of observations = 2
∴ Correct sum of observations = 200-8+12 = 204
∴ Correctmean=20Correctsum=20204=10.2
Standarddeviationσ=√n1∑i=1nxi2−n21(∑i=1nxi)2=√n1∑i=12−(xˉ)2
⇒2=√201incorrect∑i=1nxi2−(10)2
⇒4=201incorrect∑i=1nxi2−100
⇒ incorrect∑i=1nxi2=2080
∴ Correct∑i=1nxi2=incorrect∑i=1nxi2−(8)2+(12)2
2080−64+144
=2160
∴ Correctstandarddeviation=√nCorrect∑xi2−(Correctmean)2
=√202016−(10.2)2
=√108−104.04
=√3.96
1.98