Solveeit Logo

Question

Mathematics Question on Mean Deviation

The mean and standard deviation of 100100 observations were calculated as 4040 and 5.15.1, respectively by a student who took by mistake 5050 instead of 4040 for one observation. Find the correct standard deviation.

A

44

B

66

C

33

D

55

Answer

55

Explanation

Solution

Also, Standard deviation (σ)=1ni=1nxi21n2(i=1nxi)2\left(\sigma\right) =\sqrt{\frac{1}{n} \displaystyle\sum_{i=1}^{n}x_{i}^{2}-\frac{1}{n^{2}}\left(\displaystyle\sum_{i=1}^{n}x_{i}\right)^{2}} =1ni=1nxi2(xˉ)2= \sqrt{\frac{1}{n}\sum\limits_{i=1}^{n} x_{i}^{2} - \left(\bar{x}\right)^{2}} i.e. 5.1=1100×Incorrecti=1nxi2(40)25.1 = \sqrt{\frac{1}{100}\times {\text{Incorrect}} \sum\limits _{i=1}^{n} x_{i}^{2} - \left(40\right)^{2}} or, 26.01=1100×Incorrecti=1nxi2160026.01 = \frac{1}{100} \times {\text{Incorrect}} \sum\limits _{i=1}^{n} x_{i}^{2} -1600 Therefore, Incorrect i=1nxi2=100(26.01+1600)=162601\sum\limits _{i=1}^{n} x_{i}^{2} = 100\left(26.01+1600\right) = 162601 Now, Correct i=1nxi2=\sum\limits _{i=1}^{n} x_{i}^{2} = Incorrect i=1nxi2(50)2+(40)2\sum\limits _{i=1}^{n} x_{i}^{2} -\left(50\right)^{2} +\left(40\right)^{2} =1626012500+1600=161701= 162601 -2500+1600 = 161701 Therefore correct standard deviation =Correctxi2n(Correct mean)2 = \sqrt{\frac{\text{Correct} \sum x_{i}^{2}}{n}-\left({\text{Correct mean}}\right)^{2}} =161701100(39.9)2= \sqrt{\frac{161701}{100}-\left(39.9\right)^{2} } =1617.011592.01= \sqrt{1617.01 -1592.01} =25= \sqrt{25} =5 = 5