Solveeit Logo

Question

Question: The maximum work (in \[kJ\,mo{{l}^{-1}}\]) that can be derived from complete combustion of 1 mol o...

The maximum work (in kJmol1kJ\,mo{{l}^{-1}}) that can be derived from complete combustion
of 1 mol of CO at 298 K and 1 atm is [ Standard enthalpy of combustion of CO = 283.0kJmol1-283.0\,kJ\,mo{{l}^{-1}}; standard molar entropies at 298 K : SO2=205.1Jmol1{{S}_{{{O}_{2}}}}=205.1\,J\,mo{{l}^{-1}}, SCO=197.7Jmol1{{S}_{CO}}=197.7\,J\,mo{{l}^{-1}}, SCO2=213.7Jmol1{{S}_{C{{O}_{2}}}}=213.7\,J\,mo{{l}^{-1}}]
a) 257
b) 227
c) 57
d) 127

Explanation

Solution

Hint : The Gibbs free energy of a system is given as the sum of its enthalpy (H) with the product of the temperature (T in Kelvin) and the entropy (S) of the system:
G = H - TS
Free energy of reaction
ΔG=ΔHTΔS\Delta G=\Delta H-T\Delta S
Standard-state free energy of reaction
ΔG=ΔHTΔS\Delta {{G}^{\circ }}=\Delta {{H}^{\circ }}-T\Delta {{S}^{\circ }}

Complete answer : We have been given in the question that the:
Standard enthalpy of combustion of CO = 283.0kJmol1-283.0\,kJ\,mo{{l}^{-1}}
Standard molar entropies at 298 K
SO2=205.1Jmol1{{S}_{{{O}_{2}}}}=205.1\,J\,mo{{l}^{-1}}
SCO=197.7Jmol1{{S}_{CO}}=197.7\,J\,mo{{l}^{-1}}
SCO2=213.7Jmol1{{S}_{C{{O}_{2}}}}=213.7\,J\,mo{{l}^{-1}}

Now the reaction for complete combustion of Carbon monoxide can be given by and the Standard enthalpy of the reaction as provided:
CO(g)+12O2(g)CO2(g)CO(g)+\frac{1}{2}{{O}_{2}}(g)\to C{{O}_{2}}(g) ΔHrxn=283.0kJmol1\Delta {{H}^{\circ }}_{rxn}=-283.0\,kJ\,mo{{l}^{-1}}
After that we will calculate the standard entropy change for the reaction for the reaction, which can be given as:
ΔSrxn=SCO2[SCO+12(SO2)]\Delta {{S}^{\circ }}_{rxn}={{S}_{C{{O}_{2}}}}-\left[ {{S}_{CO}}+\frac{1}{2}({{S}_{{{O}_{2}}}}) \right]
Putting the values in the equation above,
ΔSrxn=213.7Jmol1[197.7Jmol1+12(205.1Jmol1)]\Delta {{S}^{\circ }}_{rxn}=213.7\,J\,mo{{l}^{-1}}-\left[ 197.7\,J\,mo{{l}^{-1}}+\frac{1}{2}(205.1\,J\,mo{{l}^{-1}}) \right]
ΔSrxn=86.5Jmol1\Delta {{S}^{\circ }}_{rxn}=-86.5\,J\,mo{{l}^{-1}}

Now to determine the maximum work, ΔGrxn\Delta {{G}^{\circ }}_{rxn}, for the reaction at 298 K we can write the Gibbs free energy as:
ΔGrxn=ΔHrxnTΔSrxn\Delta {{G}^{\circ }}_{rxn}=\Delta {{H}^{\circ }}_{rxn}-T\Delta {{S}^{\circ }}_{rxn}
Since, ΔHrxn=283.0kJmol1=283.0kJmol1×1000JkJ=283,000Jmol1\Delta {{H}^{\circ }}_{rxn}=-283.0\,kJ\,mo{{l}^{-1}}=-283.0\,kJ\,mo{{l}^{-1}}\times \frac{1000J}{kJ}=283,000J\,mo{{l}^{-1}}
Temperature T = 298 K
ΔSrxn=86.5Jmol1\Delta {{S}^{\circ }}_{rxn}=-86.5\,J\,mo{{l}^{-1}}
Putting the values in equation,
ΔGrxn=283,000Jmol1(293K)(86.5Jmol1)\Delta {{G}^{\circ }}_{rxn}=283,000J\,mo{{l}^{-1}}-(293\,K)(-86.5\,J\,mo{{l}^{-1}})
ΔGrxn=257,208Jmol1\Delta {{G}^{\circ }}_{rxn}=257,208\,J\,mo{{l}^{-1}}
ΔGrxn=257,208Jmol1×1kJ1000J\Delta {{G}^{\circ }}_{rxn}=257,208\,J\,mo{{l}^{-1}}\times \frac{1kJ}{1000J}
ΔGrxn=257.2kJmol1257kJmol1\Delta {{G}^{\circ }}_{rxn}=257.2\,kJ\,mo{{l}^{-1}}\approx 257\,kJ\,mo{{l}^{-1}}
Therefore, the maximum work ΔGrxn=257kJmol1\Delta {{G}^{\circ }}_{rxn}=257\,kJ\,mo{{l}^{-1}}.

So, the correct option is (a).

Note : In this case, we can also determine whether the reaction is spontaneous, non-spontaneous or at equilibrium.

If a reaction is favourable for both enthalpy (ΔH\Delta {{H}^{\circ }} < 0) and entropy (ΔS\Delta {{S}^{\circ }}> 0), then the reaction will be spontaneous (ΔG\Delta {{G}^{\circ }}< 0) at any temperature.
If a reaction is unfavourable for both enthalpy (ΔH\Delta {{H}^{\circ }} > 0) and entropy (ΔS\Delta {{S}^{\circ }}< 0), then the reaction will be non-spontaneous (ΔG\Delta {{G}^{\circ }}> 0) at any temperature.
If a reaction is favourable for only one of either entropy or enthalpies, the standard-state free energy equation must be used to determine whether the reaction is spontaneous or not.