Solveeit Logo

Question

Mathematics Question on Maxima and Minima

The maximum volume (in cu.mcu. m) of the right circular cone having slant height 3m3\,m is :

A

33π3 \sqrt{3} \pi

B

6π6 \pi

C

23π2 \sqrt{3} \pi

D

43π\frac{4}{3} \pi

Answer

23π2 \sqrt{3} \pi

Explanation

Solution

h=3cosθ\therefore h = 3 \cos\theta r=3sinθr=3 \sin\theta Now, V=13πr2h=π3(9sin2θ).(3cosθ)V = \frac{1}{3} \pi r^{2} h = \frac{\pi}{3} \left(9 \sin^{2} \theta\right).\left(3 \cos\theta\right) dVdθ=0sinθ=23\therefore \frac{dV}{d\theta} = 0 \Rightarrow \sin\theta = \sqrt{\frac{2}{3}} Also, d2Vdθ2]sinθ=23=\frac{d^{2}V}{d\theta^{2}} \bigg]_{\sin\theta = \sqrt{\frac{2}{3}}} = negative \Rightarrow Volume is maximum, when sinθ=23\sin\theta = \sqrt{\frac{2}{3}} Vmax(sinθ=23)=23π \therefore V_{max } \left(\sin\theta = \sqrt{\frac{2}{3}}\right) = 2\sqrt{3}\pi (in cu. m)