Solveeit Logo

Question

Mathematics Question on Linear Programming Problem

The maximum value of z=5x+3yz = 5x + 3y, subjected to the conditions 3x+5y15,5x+2y10,x,y03x + 5y \le 15, 5x + 2y \le 10, x, y \ge 0 is

A

23519\frac{235}{19}

B

32519\frac{325}{19}

C

52319\frac{523}{19}

D

53219\frac{532}{19}

Answer

23519\frac{235}{19}

Explanation

Solution

Given, inequalities are 3x+5y15,5x+2y10,x,y03x + 5y \le 15, 5x + 2y \le 10, x, y \ge 0 Also, given z=5x+3yz = 5x + 3y At point A(2,0)A \left(2, 0\right) z=5?2+0=10z = 5 ? 2 + 0 = 10 At point B(2019,4519)B\left(\frac{20}{19}, \frac{45}{19}\right), z=5×2019+3×4519=23519z = \frac{5\times20}{19}+\frac{3\times45}{19} = \frac{235}{19} At point C(0,3)C \left(0, 3\right) z=5(0)+3?3=9z = 5 \left(0\right) + 3 ? 3 = 9 Hence, maximum value of z is 23519.\frac{235}{19}.