Question
Mathematics Question on Maxima and Minima
The maximum value of xe−x is
A
e
B
e1
C
−e
D
−e1
Answer
e1
Explanation
Solution
Let y=xe−x
On differentiating w.r.t. ' x ', we get
dxdy=xe−x(−1)+e−x
dxdy=e−x(1−x)
For maximum or minimum,
dxdy=0
⇒e−x(1−x)=0
⇒1−x=0
∵e−x=0)
⇒x=1
From E (ii), we get
dx2d2y=e−x(−1)+(1−x)e−x(−1)
=−e−x−e−x+xe−x
=−2e−x+xe−x
dx2d2y=e−x(x−2)
(dx2d2y)at x=1=e−1(1−2)=e1(−1)
Negative value
∴ At x=1,y is maximum and maximum value =1e−1
=e1