Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

The maximum value of[x(x1)+1]13,0x1 [x(x-1)+1]^{\frac{1}{3}},0≤x≤1 is

A

(13)13(\frac{1}{3})^{\frac{1}{3}}

B

12\frac{1}{2}

C

1

D

0

Answer

1

Explanation

Solution

Let ƒ(x)=[x(x1)+1]13.ƒ(x)=[x(x-1)+1]\frac{1}{3}.

ƒ(x)=2x13[x(x1)+1]23∴ƒ'(x)=\frac{2x-1}{3[x(x-1)+1]\frac{2}{3}}

Now,ƒ(x)=0x=12,ƒ'(x)=0⇒x=\frac{1}{2}

Then,we evaluate the value of f at critical point 12\frac{1}{2} and at the end points of the

interval [0,1][0,1]{i.e.,at x=0andx=1x=0 and x=1}.

ƒ(0)=[0(01)+1]13=1ƒ(0)=[0(0-1)+1]\frac{1}{3}=1

ƒ(1)=[1(11)+1]13=1ƒ(1)=[1(1-1)+1]\frac{1}{3}=1

ƒ(12)=[12(12)+1]13=(34)13ƒ(\frac{1}{2})=[\frac{1}{2}(-\frac{1}{2})+1]^{\frac{1}{3}}=(\frac{3}{4})^{\frac{1}{3}}

Hence,we can conclude that the maximum value of ff in the interval [0,1]is1.[0,1]is 1.

The correct answer is C.