Solveeit Logo

Question

Question: The maximum value of the function \[y = 2\tan x - {\tan ^2}x\] over \[\left[ {0,\dfrac{\pi }{2}} \ri...

The maximum value of the function y=2tanxtan2xy = 2\tan x - {\tan ^2}x over [0,π2]\left[ {0,\dfrac{\pi }{2}} \right] is
A. \infty
B. 1
C. 3
D. 2

Explanation

Solution

Hint: Here, we will first calculate the first order derivative dydx\dfrac{{dy}}{{dx}} of the given function yy and then take it equal to 0 to find the critical point. Then we will find the sign of the second order derivative d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} at the obtained critical point. If the sign of second differentiation is negative, then the function has a point of maxima.

Complete step-by-step solution:
Given that the function
y=2tanxtan2x ......(1)y = 2\tan x - {\tan ^2}x{\text{ ......}}\left( 1 \right)

We know that the point of maxima is calculated by taking the differentiation dydx\dfrac{{dy}}{{dx}} of the given function yy equals to 0 and then finding the sign of the second differentiation d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}}. If the second differentiation is negative, the function has a point of maxima.

Differentiating the above function, we get

dydx=2sec2x2tanxsec2x =2sec2x(1tanx) ......(2)  \dfrac{{dy}}{{dx}} = 2{\sec ^2}x - 2\tan x \cdot {\sec ^2}x \\\ = 2{\sec ^2}x\left( {1 - \tan x} \right){\text{ ......}}\left( 2 \right) \\\

Taking dydx=0\dfrac{{dy}}{{dx}} = 0 to find the critical point in the above equation, we get

2sec2x(1tanx)=0 \Rightarrow 2{\sec ^2}x\left( {1 - \tan x} \right) = 0
sec2x=0\Rightarrow {\sec ^2}x = 0 or 1tanx=01 - \tan x = 0

Simplifying the above equations, we get

x=π2 \Rightarrow x = \dfrac{\pi }{2} or x=π4x = \dfrac{\pi }{4}

Here x=π2x = \dfrac{\pi }{2} is not possible because it is not in the domain of the function.
Therefore, x=π4x = \dfrac{\pi }{4} is the critical point.
Differentiating the equation (2)\left( 2 \right) using the product rule, we get

d2ydx2=ddx[2sec2x(1tanx)] =4secxsecxtanx(1tanx)+2sec2x(0sec2x) =4sec2xtanx4sec2xtan2x2sec4x  \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left[ {2{{\sec }^2}x\left( {1 - \tan x} \right)} \right] \\\ = 4\sec x \cdot \sec x \cdot \tan x\left( {1 - \tan x} \right) + 2{\sec ^2}x\left( {0 - {{\sec }^2}x} \right) \\\ = 4{\sec ^2}x\tan x - 4{\sec ^2}x{\tan ^2}x - 2{\sec ^4}x \\\

Replacing π4\dfrac{\pi }{4} for xx in the above equation, we get

d2ydx2x=4=4sec2π4tanπ44sec2π4tan2π42sec4π4{\left. {\dfrac{{{d^2}y}}{{d{x^2}}}} \right|_{x = 4}} = 4{\sec ^2}\dfrac{\pi }{4}\tan \dfrac{\pi }{4} - 4{\sec ^2}\dfrac{\pi }{4}\tan^2 \dfrac{\pi }{4} - 2{\sec ^4}\dfrac{\pi }{4}

Using the trigonometric values tanπ4=1\tan \dfrac{\pi }{4} = 1 and secπ4=2\sec \dfrac{\pi }{4} = \sqrt 2 in the above equation, we get

4(2)214(2)2(1)22(2)4 888 8  \Rightarrow 4{\left( {\sqrt 2 } \right)^2} \cdot 1 - 4{\left( {\sqrt 2 } \right)^2} \cdot {\left( 1 \right)^2} - 2 \cdot {\left( {\sqrt 2 } \right)^4} \\\ \Rightarrow 8 - 8 - 8 \\\ \Rightarrow - 8 \\\

Since 8 - 8 is negative, the given function has a point of maxima at x=π4x = \dfrac{\pi }{4}.

We will now find the maximum value of function at point x=π4x = \dfrac{\pi }{4} by substituting it in the given equation.

yx=π4=2tanπ4tan2π4 =211 =21 =1  {\left. y \right|_{x = \dfrac{\pi }{4}}} = 2\tan \dfrac{\pi }{4} - {\tan ^2}\dfrac{\pi }{4} \\\ = 2 \cdot 1 - 1 \\\ = 2 - 1 \\\ = 1 \\\

Thus, the maximum value of the given function is 1.

Hence, the option B is correct.

Note: In solving these types of questions, you should be familiar with the steps to find the point of maxima. Then use the given conditions and values given in the question, and substitute in the steps to find the point of maxima of the function. Also, we are supposed to write the values properly to avoid any miscalculation.