Solveeit Logo

Question

Mathematics Question on Maxima and Minima

The maximum value of the function y=2tanxtan2xy = 2 \, \tan \, x - \tan^2 \, x over [0,π2]\left[ 0 , \frac{\pi}{2} \right] is :

A

2

B

\infty

C

1

D

3

Answer

1

Explanation

Solution

Given,
y=2tanxtan2x...(i)y =2 \tan x-\tan ^{2} x\,...(i)
dydx=2sec2x2tanxsec2x\therefore \, \frac{d y}{d x} =2 \sec ^{2} \,x-2 \tan x \cdot \sec ^{2} \,x
=2sec2x(1tanx)...(ii)=2 \sec ^{2} x(1-\tan x)\,...(ii)
At point of maxima,
dydx=0\frac{d y}{d x}=0
2sec2x(1tanx)=02 \sec ^{2} x(1-\tan x)=0 [From E (ii)]
x=π4,π2\therefore \, x=\frac{\pi}{4}, \frac{\pi}{2}
Here, x=π2x=\frac{\pi}{2} is not possible]
x=π4\therefore\, x=\frac{\pi}{4}
[x[0,π2][\because x \in\left[0, \frac{\pi}{2}\right] (given)
Now, d2ydx2=4secxsecxtanx(1tanx)+2sec2x(0sec2x)\frac{d^{2} y}{d x^{2}}=4 \sec x \cdot \sec x \cdot \tan x(1-\tan x) +2 \sec ^{2} x\left(0-\sec ^{2} x\right)
=4sec2xtanx4sec2xtan2x2sec4x=4 \sec ^{2} \,x \tan\, x-4 \sec ^{2} x \tan ^{2} x-2 \sec ^{4} \,x
d2ydx2xπ4=4sec2π4tanπ44sec2π4\left.\therefore \frac{d^{2} y}{d x^{2}}\right|_{x-\frac{\pi}{4}}= 4 \sec ^{2} \frac{\pi}{4} \tan \frac{\pi}{4}-4 \sec ^{2} \frac{\pi}{4}
tan2π42sec4π4\tan ^{2} \frac{\pi}{4}-2 \sec ^{4} \frac{\pi}{4}
=4(2)214(2)2(1)22(2)4= 4(\sqrt{2})^{2} \cdot 1-4(\sqrt{2})^{2} \cdot(1)^{2}-2 \cdot(\sqrt{2})^{4}
=888= 8-8-8
=8=-8 which is negative.
\therefore At x=π4x=\frac{\pi}{4}, function y=2tanxtan2xy=2 \tan x-\tan ^{2} x
has maximum value.
\therefore Maximum value of function at point x=π4x=\frac{\pi}{4}, will be
[y]xπ4=1[y]_{x-\frac{\pi}{4}}=1