Question
Mathematics Question on Maxima and Minima
The maximum value of the function y=2tanx−tan2x over [0,2π] is :
A
2
B
∞
C
1
D
3
Answer
1
Explanation
Solution
Given,
y=2tanx−tan2x...(i)
∴dxdy=2sec2x−2tanx⋅sec2x
=2sec2x(1−tanx)...(ii)
At point of maxima,
dxdy=0
2sec2x(1−tanx)=0 [From E (ii)]
∴x=4π,2π
Here, x=2π is not possible]
∴x=4π
[∵x∈[0,2π] (given)
Now, dx2d2y=4secx⋅secx⋅tanx(1−tanx)+2sec2x(0−sec2x)
=4sec2xtanx−4sec2xtan2x−2sec4x
∴dx2d2yx−4π=4sec24πtan4π−4sec24π
tan24π−2sec44π
=4(2)2⋅1−4(2)2⋅(1)2−2⋅(2)4
=8−8−8
=−8 which is negative.
∴ At x=4π, function y=2tanx−tan2x
has maximum value.
∴ Maximum value of function at point x=4π, will be
[y]x−4π=1