Solveeit Logo

Question

Question: The maximum value of the function \[3\cos x - 4\sin x\] is A. \[2\] B. \[3\] C. \[4\] D. \[...

The maximum value of the function 3cosx4sinx3\cos x - 4\sin x is
A. 22
B. 33
C. 44
D. 55

Explanation

Solution

In this question we have to find the maximum value of the given function. We will first simplify the given function 3cosx4sinx3\cos x - 4\sin x in terms of sine function by multiplying and dividing simultaneously by 55 . Then we will use the fact that the maximum value of sine function is 11 to get the desired result.
Formula used: sin(yx)=sinycosxcosysinx\sin (y - x) = \sin y\cos x - \cos y\sin x

Complete answer:
This problem is based on trigonometric identities. Trigonometry is the branch of mathematics that deals with triangles, its sides, and angles . While trigonometric identities are those combinations of constants and t-ratios of angles that is true for different values of angles. For example, sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 is a trigonometric identity.
Consider the given question,
The given function is 3cosx4sinx3\cos x - 4\sin x.
Let f(x)=3cosx4sinxf(x) = 3\cos x - 4\sin x.
Multiplying and dividing the above function by 32+(4)2\sqrt {{3^2} + {{( - 4)}^2}} (i.e. 55) we have ,

f(x)=55(3cosx4sinx) f(x)=5(35cosx45sinx)  f(x) = \dfrac{5}{5}\left( {3\cos x - 4\sin x} \right) \\\ f(x) = 5\left( {\dfrac{3}{5}\cos x - \dfrac{4}{5}\sin x} \right) \\\

Now consider, siny=35\sin y = \dfrac{3}{5} , then cosy=45\cos y = \dfrac{4}{5}.
Hence from above we have,
f(x)=5(sinycosxcosysinx)f(x) = 5\left( {\sin y\cos x - \cos y\sin x} \right)
We know that, sin(yx)=sinycosxcosysinx\sin (y - x) = \sin y\cos x - \cos y\sin x.
Hence we have,
f(x)=5sin(yx)f(x) = 5\sin (y - x)
Thus we have f(x)=3cosx4sinx=5sin(yx)f(x) = 3\cos x - 4\sin x = 5\sin (y - x)
Now we have to find the maximum value of the function.
We know that the value of sine function lies between 1 - 1 and 11.
i.e. 1sin(yx)1 - 1 \leqslant \sin (y - x) \leqslant 1
Multiplying the above inequality by 5 we get,
i.e. 55sin(yx)5 - 5 \leqslant 5\sin (y - x) \leqslant 5
i.e. 5f(x)5 - 5 \leqslant f(x) \leqslant 5
Therefore, the maximum value of the function 3cosx4sinx3\cos x - 4\sin x is 55.
Hence Option D is correct.

Note:
To solve the trigonometric identity of the form acosx+bsinxa\cos x + b\sin x, we multiply and divide by a2+b2\sqrt {{a^2} + {b^2}} where aa is the coefficient of cosx\cos x and bb is the coefficient of sinx\sin x.
i.e. acosx+bsinx=a2+b2(aa2+b2cosx+ba2+b2sinx)a\cos x + b\sin x = \sqrt {{a^2} + {b^2}} \left( {\dfrac{a}{{\sqrt {{a^2} + {b^2}} }}\cos x + \dfrac{b}{{\sqrt {{a^2} + {b^2}} }}\sin x} \right)
Now we consider aa2+b2=siny\dfrac{a}{{\sqrt {{a^2} + {b^2}} }} = \sin y
This implies ba2+b2=cosy\dfrac{b}{{\sqrt {{a^2} + {b^2}} }} = \cos y
Hence we have,
acosx+bsinx=a2+b2(sinycosx+cosysinx)a\cos x + b\sin x = \sqrt {{a^2} + {b^2}} \left( {\sin y\cos x + \cos y\sin x} \right)
On solving, we have,
acosx+bsinx=a2+b2sin(x+y)a\cos x + b\sin x = \sqrt {{a^2} + {b^2}} \sin (x + y).