Solveeit Logo

Question

Question: The maximum value of \(\sin\left( x + \frac{\pi}{6} \right) + \cos\left( x + \frac{\pi}{6} \right)\)...

The maximum value of sin(x+π6)+cos(x+π6)\sin\left( x + \frac{\pi}{6} \right) + \cos\left( x + \frac{\pi}{6} \right) in the interval (0,π2)\left( 0,\frac{\pi}{2} \right)is attained at

A

x=π12x = \frac{\pi}{12}

B

x=π6x = \frac{\pi}{6}

C

x=π3x = \frac{\pi}{3}

D

x=π2x = \frac{\pi}{2}

Answer

x=π12x = \frac{\pi}{12}

Explanation

Solution

2cos(x+π6π4)=2cos(xπ12)\sqrt{2}\cos\left( x + \frac{\pi}{6} - \frac{\pi}{4} \right) = \sqrt{2}\cos\left( x - \frac{\pi}{12} \right).

Hence maximum value will be at x=π12x = \frac{\pi}{12}.