Solveeit Logo

Question

Question: The maximum value of \(\sin x(1 + \cos x)\) will be at...

The maximum value of sinx(1+cosx)\sin x(1 + \cos x) will be at

A

x=π2x = \frac{\pi}{2}

B

x=π6x = \frac{\pi}{6}

C

x=π3x = \frac{\pi}{3}

D

) x=πx = \pi

Answer

x=π3x = \frac{\pi}{3}

Explanation

Solution

y=sinx(1+cosx)=sinx+12sin2xy = \sin x(1 + \cos x) = \sin x + \frac{1}{2}\sin 2x\therefore dydx=cosx+cos2x\frac{dy}{dx} = \cos x + \cos 2x and d2ydx2=sinx2sin2x\frac{d^{2}y}{dx^{2}} = - \sin x - 2\sin 2x

On putting dydx=0,cosx+cos2x=0\frac{dy}{dx} = 0,\cos x + \cos 2x = 0

cosx=cos2x=cos(π2x)\cos x = - \cos 2x = \cos(\pi - 2x)x=π2xx = \pi - 2x

\therefore x=π3x = \frac{\pi}{3}, \therefore (d2ydx2)x=π/3=sin(13π)2sin(23π)\left( \frac{d^{2}y}{dx^{2}} \right)_{x = \pi/3} = - \sin\left( \frac{1}{3}\pi \right) - 2\sin\left( \frac{2}{3}\pi \right)

= 322.32=332\frac{- \sqrt{3}}{2} - 2.\frac{\sqrt{3}}{2} = \frac{- 3\sqrt{3}}{2} which is negative.

\therefore at x=π3x = \frac{\pi}{3} the function is maximum.