Solveeit Logo

Question

Question: The maximum value of \(\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right)\)...

The maximum value of sin(x+π6)+cos(x+π6)\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right) in the interval (0,π2)\left( 0,\dfrac{\pi }{2} \right) is attained at
(a) π12\dfrac{\pi }{12}
(b) π6\dfrac{\pi }{6}
(c) π3\dfrac{\pi }{3}
(d) π2\dfrac{\pi }{2}

Explanation

Solution

We start solving the problem by assuming f(x)=sin(x+π6)+cos(x+π6)f\left( x \right)=\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right). We then make use of the property sin(π2x)=cosx\sin \left( \dfrac{\pi }{2}-x \right)=\cos x for the cosine function present in the problem. We then make use of sum to product formula sinA+sinB=2sin(A+B2)cos(AB2)\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) to proceed through the problem. We then make the necessary calculations to simplify the function. We then make use of the property that the function cosθ\cos \theta is maximum if the value of θ\theta is 0 to get the required value of ‘x’.

Complete step by step answer:
According to the problem, we are asked to find the value of ‘x’ at which the maximum value of the function sin(x+π6)+cos(x+π6)\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right) is attained in the interval (0,π2)\left( 0,\dfrac{\pi }{2} \right).
Let us assume f(x)=sin(x+π6)+cos(x+π6)f\left( x \right)=\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right).
We know that sin(π2x)=cosx\sin \left( \dfrac{\pi }{2}-x \right)=\cos x.
f(x)=sin(x+π6)+sin(π2(x+π6))\Rightarrow f\left( x \right)=\sin \left( x+\dfrac{\pi }{6} \right)+\sin \left( \dfrac{\pi }{2}-\left( x+\dfrac{\pi }{6} \right) \right).
f(x)=sin(x+π6)+sin(π3x)\Rightarrow f\left( x \right)=\sin \left( x+\dfrac{\pi }{6} \right)+\sin \left( \dfrac{\pi }{3}-x \right).
We know that sinA+sinB=2sin(A+B2)cos(AB2)\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right).
f(x)=2sin(x+π6+π3x2)cos(x+π6π3+x2)\Rightarrow f\left( x \right)=2\sin \left( \dfrac{x+\dfrac{\pi }{6}+\dfrac{\pi }{3}-x}{2} \right)\cos \left( \dfrac{x+\dfrac{\pi }{6}-\dfrac{\pi }{3}+x}{2} \right).
f(x)=2sin(2π+π62)cos(2x+π2π62)\Rightarrow f\left( x \right)=2\sin \left( \dfrac{\dfrac{2\pi +\pi }{6}}{2} \right)\cos \left( \dfrac{2x+\dfrac{\pi -2\pi }{6}}{2} \right).
f(x)=2sin(3π62)cos(2x+(π6)2)\Rightarrow f\left( x \right)=2\sin \left( \dfrac{\dfrac{3\pi }{6}}{2} \right)\cos \left( \dfrac{2x+\left( \dfrac{-\pi }{6} \right)}{2} \right).
f(x)=2sin(π4)cos(xπ12)\Rightarrow f\left( x \right)=2\sin \left( \dfrac{\pi }{4} \right)\cos \left( x-\dfrac{\pi }{12} \right).
f(x)=2(12)cos(xπ12)\Rightarrow f\left( x \right)=2\left( \dfrac{1}{\sqrt{2}} \right)\cos \left( x-\dfrac{\pi }{12} \right).
f(x)=2cos(xπ12)\Rightarrow f\left( x \right)=\sqrt{2}\cos \left( x-\dfrac{\pi }{12} \right) ---(1).
From equation (1), we can see that the function f(x)f\left( x \right) will be maximum if the function cos(x+π12)\cos \left( x+\dfrac{-\pi }{12} \right) is maximum.
We know that the function cosθ\cos \theta is maximum if the value of θ\theta is 0.
So, the function f(x)f\left( x \right) is maximum if xπ12=0x-\dfrac{\pi }{12}=0.
x=π12\Rightarrow x=\dfrac{\pi }{12}.
So, we have found that the function sin(x+π6)+cos(x+π6)\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right) will attain maximum at x=π12x=\dfrac{\pi }{12}.

So, the correct answer is “Option a”.

Note: We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully. We can also solve this problem as shown below:
We have f(x)=sin(x+π6)+cos(x+π6)f\left( x \right)=\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right).
Let us differentiate w.r.t x on both sides.
So, we get f(x)=ddx(sin(x+π6)+cos(x+π6)){{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( \sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right) \right).
f(x)=ddx(sin(x+π6))+ddx(cos(x+π6))\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( \sin \left( x+\dfrac{\pi }{6} \right) \right)+\dfrac{d}{dx}\left( \cos \left( x+\dfrac{\pi }{6} \right) \right).
f(x)=cos(x+π6)sin(x+π6)\Rightarrow {{f}^{'}}\left( x \right)=\cos \left( x+\dfrac{\pi }{6} \right)-\sin \left( x+\dfrac{\pi }{6} \right) ---(1).
Now, let us find the value of x in the interval (0,π2)\left( 0,\dfrac{\pi }{2} \right) for which we get f(x)=0{{f}^{'}}\left( x \right)=0.
cos(x+π6)sin(x+π6)=0\Rightarrow \cos \left( x+\dfrac{\pi }{6} \right)-\sin \left( x+\dfrac{\pi }{6} \right)=0.
cos(x+π6)=sin(x+π6)\Rightarrow \cos \left( x+\dfrac{\pi }{6} \right)=\sin \left( x+\dfrac{\pi }{6} \right). We know that this will be possible if x+π6=π4x+\dfrac{\pi }{6}=\dfrac{\pi }{4}.
x=π4π6\Rightarrow x=\dfrac{\pi }{4}-\dfrac{\pi }{6}.
x=3π2π12=π12\Rightarrow x=\dfrac{3\pi -2\pi }{12}=\dfrac{\pi }{12} ---(2).
Now, let us differentiate equation (1) again.
So, we get f(x)=ddx(cos(x+π6)sin(x+π6)){{f}^{''}}\left( x \right)=\dfrac{d}{dx}\left( \cos \left( x+\dfrac{\pi }{6} \right)-\sin \left( x+\dfrac{\pi }{6} \right) \right).
f(x)=ddx(cos(x+π6))ddx(sin(x+π6))\Rightarrow {{f}^{''}}\left( x \right)=\dfrac{d}{dx}\left( \cos \left( x+\dfrac{\pi }{6} \right) \right)-\dfrac{d}{dx}\left( \sin \left( x+\dfrac{\pi }{6} \right) \right).
f(x)=sin(x+π6)cos(x+π6)\Rightarrow {{f}^{''}}\left( x \right)=-\sin \left( x+\dfrac{\pi }{6} \right)-\cos \left( x+\dfrac{\pi }{6} \right) ---(3).
Let us substitute the value of ‘x’ obtained from equation (2) in equation (3).
So, we get f(π12)=sin(π12+π6)cos(π12+π6){{f}^{''}}\left( \dfrac{\pi }{12} \right)=-\sin \left( \dfrac{\pi }{12}+\dfrac{\pi }{6} \right)-\cos \left( \dfrac{\pi }{12}+\dfrac{\pi }{6} \right).
f(π12)=sin(π4)cos(π4)\Rightarrow {{f}^{''}}\left( \dfrac{\pi }{12} \right)=-\sin \left( \dfrac{\pi }{4} \right)-\cos \left( \dfrac{\pi }{4} \right).
f(π12)=1212\Rightarrow {{f}^{''}}\left( \dfrac{\pi }{12} \right)=-\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}.
f(π12)=2<0\Rightarrow {{f}^{''}}\left( \dfrac{\pi }{12} \right)=-\sqrt{2}<0. Which suggests there is a maximum at x=π12x=\dfrac{\pi }{12}.