Solveeit Logo

Question

Question: The maximum value of \({{\sin }^{3}}x+{{\cos }^{3}}x\) is...

The maximum value of sin3x+cos3x{{\sin }^{3}}x+{{\cos }^{3}}x is

Explanation

Solution

To solve this question, firstly we will find the derivative of the function f(x)=sin3x+cos3xf(x)={{\sin }^{3}}x+{{\cos }^{3}}xand by putting the first derivative equal to zero, we will find extreme points. Then, we will find the second derivative of the function f(x)=sin3x+cos3xf(x)={{\sin }^{3}}x+{{\cos }^{3}}x, and for both extreme values we will check the value of the second derivative and accordingly we will verify which point will be the point of maxima. Then, we will evaluate the maximum value of function f(x)=sin3x+cos3xf(x)={{\sin }^{3}}x+{{\cos }^{3}}x, by putting that point of maxima in function.

Complete step-by-step solution
Now, let function be
f(x)=sin3x+cos3xf(x)={{\sin }^{3}}x+{{\cos }^{3}}x
We know that ddxfn(x)=nfn1(x)f(x)\dfrac{d}{dx}{{f}^{n}}(x)=n{{f}^{n-1}}(x)f'(x)
Differentiating, f(x)=sin3x+cos3xf(x)={{\sin }^{3}}x+{{\cos }^{3}}x with respect to x, we get
f(x)=3sin2xcosx3cos2xsinxf'(x)=3{{\sin }^{2}}x\cos x-3{{\cos }^{2}}x\sin x
As we know that, ddx(sinax)=acosax\dfrac{d}{dx}(\sin ax)=a\cos ax and ddx(cosax)=a sinax\dfrac{d}{dx}(\cos ax)=-a \ sin ax
Now, putting f(x)=3sin2xcosx3cos2xsinxf'(x)=3{{\sin }^{2}}x\cos x-3{{\cos }^{2}}x\sin x equals to zero to get extreme points, we get
3sin2xcosx3cos2xsinx=03{{\sin }^{2}}x\cos x-3{{\cos }^{2}}x\sin x=0
On re-writing terms, we get
3cosxsinx(sinxcosx)=03\cos x\sin x(\sin x-\cos x)=0
cosxsinx(sinxcosx)=0\cos x\sin x(\sin x-\cos x)=0
Multiplying and dividing the term by 2, we get
22cosxsinx(sinxcosx)=0\dfrac{2}{2}\cos x\sin x(\sin x-\cos x)=0
We know that 2sinxcosx = sin2x
So, we get
sin2x(sinxcosx)2=0\dfrac{\sin 2x(\sin x-\cos x)}{2}=0
Or, sin2x(sinxcosx)=0\sin 2x(\sin x-\cos x)=0
So, we will have two cases, which are
sin2x = 0 or sinx – cosx = 0
\Rightarrow sin2x = 0 or sinx = cosx
\Rightarrow sin2x = 0 or tanx = 1
now, in interval of (0,π2)\left( 0,\dfrac{\pi }{2} \right) , we have
sin2x = 0 for x = 0, and
tanx = 1 for x=π4x=\dfrac{\pi }{4} .
so, now differentiating f(x)=3sin2xcosx3cos2xsinxf'(x)=3{{\sin }^{2}}x\cos x-3{{\cos }^{2}}x\sin x, with respect to x, which will give second derivative of function f(x), we get
f(x)=ddx(3sin2xcosx3cos2xsinx)f''(x)=\dfrac{d}{dx}\left( 3{{\sin }^{2}}x\cos x-3{{\cos }^{2}}x\sin x \right)
We know that, ddxf(x).g(x)=f(x)g(x)+g(x)f(x)\dfrac{d}{dx}f(x).g(x)=f'(x)g(x)+g'(x)f(x)
So, on solving we get
f(x)=3(2sinxcos2xsin3x)3(2cosxsin2x+cos3x)f''(x)=3(2\sin x{{\cos }^{2}}x-{{\sin }^{3}}x)-3(-2\cos x{{\sin }^{2}}x+{{\cos }^{3}}x)
f(x)=6sinxcos2x+6cosxsin2x3cos3x3sin3x\Rightarrow f''(x)=6\sin x{{\cos }^{2}}x+6\cos x{{\sin }^{2}}x-3{{\cos }^{3}}x-3{{\sin }^{3}}x
Now, at point x = 0,
f(0)=6sin(0)cos2(0)+6cos(0)sin2(0)3cos3(0)3sin3(0)f''(0)=6\sin (0){{\cos }^{2}}(0)+6\cos (0){{\sin }^{2}}(0)-3{{\cos }^{3}}(0)-3{{\sin }^{3}}(0)
f(0)=3<0\Rightarrow f''(0)=-3<0, as we know that sin(0) = 0 and cos(0) = 1
Now, at point x=π4x=\dfrac{\pi }{4}
f(π4)=6sin(π4)cos2(π4)+6cos(π4)sin2(π4)3cos3(π4)3sin3(π4)f''\left( \dfrac{\pi }{4} \right)=6\sin \left( \dfrac{\pi }{4} \right){{\cos }^{2}}\left( \dfrac{\pi }{4} \right)+6\cos \left( \dfrac{\pi }{4} \right){{\sin }^{2}}\left( \dfrac{\pi }{4} \right)-3{{\cos }^{3}}\left( \dfrac{\pi }{4} \right)-3{{\sin }^{3}}\left( \dfrac{\pi }{4} \right)
f(π4)=6(12)(12)2+6(12)(12)23(12)33(12)3\Rightarrow f''\left( \dfrac{\pi }{4} \right)=6\left( \dfrac{1}{\sqrt{2}} \right){{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}+6\left( \dfrac{1}{\sqrt{2}} \right){{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}-3{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}-3{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}, as we know that
sinπ4=12\Rightarrow \sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}} and cosπ4=12\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}
On simplifying, we get
f(π4)=6(12)(12)2+6(12)(12)26(12)3f''\left( \dfrac{\pi }{4} \right)=6\left( \dfrac{1}{\sqrt{2}} \right){{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}+6\left( \dfrac{1}{\sqrt{2}} \right){{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}-6{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}
f(π4)=6(12)(12)2\Rightarrow f''\left( \dfrac{\pi }{4} \right)=6\left( \dfrac{1}{\sqrt{2}} \right){{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}
f(π4)=(32)>0\Rightarrow f''\left( \dfrac{\pi }{4} \right)=\left( \dfrac{3}{\sqrt{2}} \right)>0
Now, we know that if f’’(x) < 0, at x = c then x = c is a point of maxima and if f’’(x) > 0, at x = c then x = c is a point of minima.
So, x = 0 is a point of maxima.
Then, at x = 0
f(0)=sin3(0)+cos3(0)f(0)={{\sin }^{3}}(0)+{{\cos }^{3}}(0)
f(0) = 0 + 1 = 1
Hence, the maximum value of sin3x+cos3x{{\sin }^{3}}x+{{\cos }^{3}}x is 1.

Note: To solve such a type of question, one of the best ways to solve these questions is a second derivative test. Always remember that ddxfn(x)=nfn1(x)f(x)\dfrac{d}{dx}{{f}^{n}}(x)=n{{f}^{n-1}}(x)f'(x), ddx(sinax)=acosax\dfrac{d}{dx}(\sin ax)=a\cos ax, ddx(cosax)=asinax\dfrac{d}{dx}(\cos ax)=-a \sin ax, ddxf(x).g(x)=f(x)g(x)+g(x)f(x)\dfrac{d}{dx}f(x).g(x)=f'(x)g(x)+g'(x)f(x). Try not to make any calculation errors while solving the question.