Solveeit Logo

Question

Question: The maximum value of P such that 3<sup>P</sup> divides 99 × 97 × 95 × .... × 51 is-...

The maximum value of P such that 3P divides 99 × 97 × 95 × .... × 51 is-

A

11

B

14

C

13

D

12

Answer

14

Explanation

Solution

99 × 97 × 95 ×....× 51

= 100!(100×98×96×...×52)\frac{100!}{(100 \times 98 \times 96 \times ... \times 52)}× 150!\frac{1}{50!} 100!225×50!×50!\frac{100!}{2^{25} \times 50! \times 50!}

maximum power of 3 in 100 !

= [1003]+[1009]+[10027]+[10081]\left\lbrack \frac{100}{3} \right\rbrack + \left\lbrack \frac{100}{9} \right\rbrack + \left\lbrack \frac{100}{27} \right\rbrack + \left\lbrack \frac{100}{81} \right\rbrack

= 33 + 11 + 3 + 1 = 48.

maximum power of 3 in 50! = [503]+[509]+[5027]\left\lbrack \frac{50}{3} \right\rbrack + \left\lbrack \frac{50}{9} \right\rbrack + \left\lbrack \frac{50}{27} \right\rbrack

= 16 + 5 + 1 = 22

maximum power of 3 in 25! = [253]+[259]\left\lbrack \frac{25}{3} \right\rbrack + \left\lbrack \frac{25}{9} \right\rbrack

= 8 + 2 = 10

\therefore exponent of 3 = 48 + 10 – (22 × 2) = 14