Question
Mathematics Question on integral
The maximum value of lnxx is:
A
(A) e
B
(B) 1e
C
(C) 2e
D
(D) 1
Answer
(B) 1e
Explanation
Solution
Explanation:
Given: Let f(x)=lnxxDifferentiating both sides, we get:f′(x)=ddx(lnxx)=1x(x)−1(lnx)x2⇒f′(x)=1−lnxx2f′′(x)=ddx(f′(x))=ddx(1−lnxx2)=x2ddx(1−lnx)−(1−lnx)ddx(x2)(x2)2=x2(−1x)−(1−lnx)(2x)x4⇒−x−2x+2x(lnx)x4⇒x(−3+2(lnx))x4⇒f′′(x)=−(3−2lnx)x3To find the value of xf′(x)=0⇒1−lnxx2=0⇒1−lnx=0⇒lnx=1⇒x=e1=e(lnab=c⇒b=ac)Now, at x=e,f′′(e)=−(3−2lne)e3=−3+2e3=−1e3<0At x=e, maximum value of f(x) obtain∴f(x=e)=lnxx=lnee=1e(∵lne=1)Hence, the correct option is (B).