Solveeit Logo

Question

Question: The maximum value of \(\left( \frac{1}{x} \right)^{2x^{2}}\)is –...

The maximum value of (1x)2x2\left( \frac{1}{x} \right)^{2x^{2}}is –

A

1

B

e

C

e1/e

D

None

Answer

e1/e

Explanation

Solution

y is maximum when log y = z is max.

\ z = 2x2 log 1x\frac{1}{x} = – 2x2 log x

dzdx\frac{dz}{dx} = –2[x + 2x log x] = 0

= –2x(1 + 2 log x) = 0

\ log x = –12\frac{1}{2} or x = e–1/2 =1e\frac{1}{\sqrt{e}}

d2zdx2\frac{d^{2}z}{dx^{2}}= – 2 [(1+2logx).1+x.2x]\left\lbrack (1 + 2\log x).1 + x.\frac{2}{x} \right\rbrack

= –2 [0 + 2] = –4 = –ive

\ Max.

\ y = (1x)2x2\left( \frac{1}{x} \right)^{2x^{2}} = (e)2.(1/e)=e1/e(\sqrt{e})^{2.(1/e)} = e^{1/e}.