Solveeit Logo

Question

Mathematics Question on Application of derivatives

The maximum value of (1x)x\left( \frac{1}{x} \right)^x is

A

ee

B

eee^e

C

e1/ee^{1/e}

D

(1e)e\left( \frac{1}{e}\right)^e

Answer

e1/ee^{1/e}

Explanation

Solution

Let y=(1x)xy=\left(\frac{1}{x}\right)^{x}
y=xx\Rightarrow y=x^{-x}
dydx=xx(1logx)\therefore \frac{d y}{d x}=x^{-x}(-1-\log x)
dydx=xx(1+logx)\Rightarrow \frac{d y}{d x}=-x^{-x}(1+\log x)
[ddxf(x)d(x)=f(x)g(x)\left[\because \frac{d}{d x} f(x)^{d(x)}=f(x)^{g(x)}\right.
\left.\left\\{g(x) \cdot \frac{1}{f(x)} \cdot f'(x)+g'(x) \log f(x)\right\\}\right]
For maxima,
dydx=0\frac{dy}{dx} = 0
1+logx=0[xx0]\Rightarrow 1 + \log\,x = 0\,\,[\because x^{-x} \ne0 ]
logx=1\Rightarrow \log\,x = -1
x=e1\Rightarrow x = e^{-1}
Hence, the maximum value of (1x)x\left(\frac{1}{x}\right)^x is (1e1)e1\left(\frac{1}{e^{-1}}\right)^{e^{-1}}
i.e., (e)1/e(e)^{1/e} at x=e1x = e^{-1}