Question
Mathematics Question on Application of derivatives
The maximum value of (x1)x is
A
e
B
ee
C
e1/e
D
(e1)e
Answer
e1/e
Explanation
Solution
Let y=(x1)x
⇒y=x−x
∴dxdy=x−x(−1−logx)
⇒dxdy=−x−x(1+logx)
[∵dxdf(x)d(x)=f(x)g(x)
\left.\left\\{g(x) \cdot \frac{1}{f(x)} \cdot f'(x)+g'(x) \log f(x)\right\\}\right]
For maxima,
dxdy=0
⇒1+logx=0[∵x−x=0]
⇒logx=−1
⇒x=e−1
Hence, the maximum value of (x1)x is (e−11)e−1
i.e., (e)1/e at x=e−1