Solveeit Logo

Question

Mathematics Question on Application of derivatives

The maximum value of (1x)2x2\left(\frac{1}{x}\right)^{2x^2} is

A

e1/2e^{-1/2}

B

ee\sqrt[e]{e}

C

11

D

e2e^2

Answer

ee\sqrt[e]{e}

Explanation

Solution

y=(1x)2x2logy=2x2log1xy =\left(\frac{1}{x}\right)^{2x^2} \Rightarrow \log y =2x^{2} \log \frac{1}{x}
Differentiate w.r.t. x, we get
1y.dydx=4xlog1x+2x2(1x)\Rightarrow \frac{1}{y}. \frac{dy}{dx} = 4x \log \frac{1}{x} + 2x^{2} \left(-\frac{1}{x}\right)
For maxima and minima
dydx=04xlogx2x=0\frac{dy}{dx} =0 \Rightarrow -4x \log x-2x =0
2logx+1x=e1e\Rightarrow 2 \log x+1 \Rightarrow x=e^{- \frac{1}{e}}
Now, d2ydx2xe1/e<0\frac{d^{2}y}{dx^{2}}|_{x-e^{-1 /e}} <0