Solveeit Logo

Question

Question: The maximum value of $\int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin x. f(x) dx$, subject to the condit...

The maximum value of π23π2sinx.f(x)dx\int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin x. f(x) dx, subject to the condition f(x)5|f(x)| \leq 5 is MM, then M10\frac{M}{10} is equal to

Answer

2

Explanation

Solution

To find the maximum value of the integral π23π2sinxf(x)dx\int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin x \cdot f(x) dx subject to the condition f(x)5|f(x)| \leq 5, we need to choose f(x)f(x) such that the integrand sinxf(x)\sin x \cdot f(x) is maximized at every point xx in the interval.

The condition f(x)5|f(x)| \leq 5 implies 5f(x)5-5 \leq f(x) \leq 5. To maximize the product sinxf(x)\sin x \cdot f(x):

  1. If sinx>0\sin x > 0, we should choose f(x)f(x) to be as large positive as possible, i.e., f(x)=5f(x) = 5. In this case, sinxf(x)=5sinx\sin x \cdot f(x) = 5 \sin x.
  2. If sinx<0\sin x < 0, we should choose f(x)f(x) to be as large negative as possible, i.e., f(x)=5f(x) = -5. In this case, sinxf(x)=5sinx\sin x \cdot f(x) = -5 \sin x.

Combining these two cases, we can write the optimal choice for f(x)f(x) as f(x)=5sgn(sinx)f(x) = 5 \cdot \text{sgn}(\sin x). Substituting this into the integral, the integrand becomes: sinxf(x)=sinx(5sgn(sinx))=5(sinxsgn(sinx))=5sinx\sin x \cdot f(x) = \sin x \cdot (5 \cdot \text{sgn}(\sin x)) = 5 \cdot (\sin x \cdot \text{sgn}(\sin x)) = 5 |\sin x|.

So, the maximum value MM is given by: M=π23π25sinxdx=5π23π2sinxdxM = \int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} 5 |\sin x| dx = 5 \int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} |\sin x| dx.

Now, we need to evaluate the integral π23π2sinxdx\int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} |\sin x| dx. We split the integral based on the sign of sinx\sin x in the given interval:

  • For x[π2,0]x \in [-\frac{\pi}{2}, 0], sinx0\sin x \leq 0, so sinx=sinx|\sin x| = -\sin x.
  • For x[0,π]x \in [0, \pi], sinx0\sin x \geq 0, so sinx=sinx|\sin x| = \sin x.
  • For x[π,3π2]x \in [\pi, \frac{3\pi}{2}], sinx0\sin x \leq 0, so sinx=sinx|\sin x| = -\sin x.

Therefore, M=5[π20(sinx)dx+0πsinxdx+π3π2(sinx)dx]M = 5 \left[ \int_{-\frac{\pi}{2}}^{0} (-\sin x) dx + \int_{0}^{\pi} \sin x dx + \int_{\pi}^{\frac{3\pi}{2}} (-\sin x) dx \right]

Let's evaluate each part:

  1. π20(sinx)dx=[cosx]π20=cos0cos(π2)=10=1\int_{-\frac{\pi}{2}}^{0} (-\sin x) dx = [\cos x]_{-\frac{\pi}{2}}^{0} = \cos 0 - \cos(-\frac{\pi}{2}) = 1 - 0 = 1.
  2. 0πsinxdx=[cosx]0π=(cosπ)(cos0)=((1))(1)=1+1=2\int_{0}^{\pi} \sin x dx = [-\cos x]_{0}^{\pi} = (-\cos \pi) - (-\cos 0) = (-(-1)) - (-1) = 1 + 1 = 2.
  3. π3π2(sinx)dx=[cosx]π3π2=cos3π2cosπ=0(1)=1\int_{\pi}^{\frac{3\pi}{2}} (-\sin x) dx = [\cos x]_{\pi}^{\frac{3\pi}{2}} = \cos \frac{3\pi}{2} - \cos \pi = 0 - (-1) = 1.

Summing these values: π23π2sinxdx=1+2+1=4\int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} |\sin x| dx = 1 + 2 + 1 = 4.

Now, substitute this back into the expression for MM: M=5×4=20M = 5 \times 4 = 20.

The question asks for the value of M10\frac{M}{10}. M10=2010=2\frac{M}{10} = \frac{20}{10} = 2.

The final answer is 2\boxed{2}.

Explanation of the solution: To maximize g(x)f(x)dx\int g(x) f(x) dx with f(x)C|f(x)| \leq C, choose f(x)=Csgn(g(x))f(x) = C \cdot \text{sgn}(g(x)). Here g(x)=sinxg(x) = \sin x and C=5C=5. So f(x)=5sgn(sinx)f(x) = 5 \cdot \text{sgn}(\sin x). The integral becomes M=π23π25sinxdx=5(π20(sinx)dx+0πsinxdx+π3π2(sinx)dx)M = \int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} 5 |\sin x| dx = 5 \left( \int_{-\frac{\pi}{2}}^{0} (-\sin x) dx + \int_{0}^{\pi} \sin x dx + \int_{\pi}^{\frac{3\pi}{2}} (-\sin x) dx \right). Evaluating the integrals: π20(sinx)dx=[cosx]π20=10=1\int_{-\frac{\pi}{2}}^{0} (-\sin x) dx = [\cos x]_{-\frac{\pi}{2}}^{0} = 1 - 0 = 1. 0πsinxdx=[cosx]0π=1(1)=2\int_{0}^{\pi} \sin x dx = [-\cos x]_{0}^{\pi} = 1 - (-1) = 2. π3π2(sinx)dx=[cosx]π3π2=0(1)=1\int_{\pi}^{\frac{3\pi}{2}} (-\sin x) dx = [\cos x]_{\pi}^{\frac{3\pi}{2}} = 0 - (-1) = 1. Thus, M=5(1+2+1)=5×4=20M = 5 (1 + 2 + 1) = 5 \times 4 = 20. Finally, $\frac{M}{10} = \frac{20}{10} = 2.