Question
Question: The maximum value of $\int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin x. f(x) dx$, subject to the condit...
The maximum value of ∫−2π23πsinx.f(x)dx, subject to the condition ∣f(x)∣≤5 is M, then 10M is equal to

2
Solution
To find the maximum value of the integral ∫−2π23πsinx⋅f(x)dx subject to the condition ∣f(x)∣≤5, we need to choose f(x) such that the integrand sinx⋅f(x) is maximized at every point x in the interval.
The condition ∣f(x)∣≤5 implies −5≤f(x)≤5. To maximize the product sinx⋅f(x):
- If sinx>0, we should choose f(x) to be as large positive as possible, i.e., f(x)=5. In this case, sinx⋅f(x)=5sinx.
- If sinx<0, we should choose f(x) to be as large negative as possible, i.e., f(x)=−5. In this case, sinx⋅f(x)=−5sinx.
Combining these two cases, we can write the optimal choice for f(x) as f(x)=5⋅sgn(sinx). Substituting this into the integral, the integrand becomes: sinx⋅f(x)=sinx⋅(5⋅sgn(sinx))=5⋅(sinx⋅sgn(sinx))=5∣sinx∣.
So, the maximum value M is given by: M=∫−2π23π5∣sinx∣dx=5∫−2π23π∣sinx∣dx.
Now, we need to evaluate the integral ∫−2π23π∣sinx∣dx. We split the integral based on the sign of sinx in the given interval:
- For x∈[−2π,0], sinx≤0, so ∣sinx∣=−sinx.
- For x∈[0,π], sinx≥0, so ∣sinx∣=sinx.
- For x∈[π,23π], sinx≤0, so ∣sinx∣=−sinx.
Therefore, M=5[∫−2π0(−sinx)dx+∫0πsinxdx+∫π23π(−sinx)dx]
Let's evaluate each part:
- ∫−2π0(−sinx)dx=[cosx]−2π0=cos0−cos(−2π)=1−0=1.
- ∫0πsinxdx=[−cosx]0π=(−cosπ)−(−cos0)=(−(−1))−(−1)=1+1=2.
- ∫π23π(−sinx)dx=[cosx]π23π=cos23π−cosπ=0−(−1)=1.
Summing these values: ∫−2π23π∣sinx∣dx=1+2+1=4.
Now, substitute this back into the expression for M: M=5×4=20.
The question asks for the value of 10M. 10M=1020=2.
The final answer is 2.
Explanation of the solution: To maximize ∫g(x)f(x)dx with ∣f(x)∣≤C, choose f(x)=C⋅sgn(g(x)). Here g(x)=sinx and C=5. So f(x)=5⋅sgn(sinx). The integral becomes M=∫−2π23π5∣sinx∣dx=5(∫−2π0(−sinx)dx+∫0πsinxdx+∫π23π(−sinx)dx). Evaluating the integrals: ∫−2π0(−sinx)dx=[cosx]−2π0=1−0=1. ∫0πsinxdx=[−cosx]0π=1−(−1)=2. ∫π23π(−sinx)dx=[cosx]π23π=0−(−1)=1. Thus, M=5(1+2+1)=5×4=20. Finally, $\frac{M}{10} = \frac{20}{10} = 2.