Solveeit Logo

Question

Question: The maximum value of function \[f(x)=\sin x(1+\cos x)\] \[x\in R\] is: A. \(\dfrac{{{\text{3}}^{\d...

The maximum value of function f(x)=sinx(1+cosx)f(x)=\sin x(1+\cos x) xRx\in R is:
A. 3324\dfrac{{{\text{3}}^{\dfrac{\text{3}}{\text{2}}}}}{\text{4}}
B. 3534\dfrac{{{\text{3}}^{\dfrac{\text{5}}{\text{3}}}}}{\text{4}}
C. 32\dfrac{\text{3}}{2}
D. 3754\dfrac{{{\text{3}}^{\dfrac{7}{5}}}}{\text{4}}

Explanation

Solution

Firstly multiply the entire function then apply the first derivative test then equate the obtained term to zero to find the values of xx.Then apply the second derivative test to find the maximum value and then put the obtained value in the given solution to check which option is correct.

Complete step by step answer:
In our daily life, there are some situations where the greatest and least values of a function are required. The value of a function f(x)f(x) of xx is said to be maximum when it is greater than the value which the function can assume immediately preceding or following. If the value of a function will increase when the value of the independent variable xx will increase. After retaining maximum value its value will start to decrease, then the points at which the functions will start to decrease is called maxima of the function. In a similar way the point at which the value of the function will start to increase, is called minima of the function.
For maxima : At x=ax=a, the value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} should be negative that is d2ydx2<0\dfrac{{{d}^{2}}y}{d{{x}^{2}}}<0
For minima : At x=ax=a, the value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} should be positive that is d2ydx2>0\dfrac{{{d}^{2}}y}{d{{x}^{2}}}>0
Now according to the question:
f(x)=sinx(1+cosx)f(x)=\sin x(1+\cos x)
Now we are multiplying the entire function we will get:
f(x)=sinx+sinxcosxf(x)=\sin x+\sin x\cdot \cos x
Now differentiating the function f(x)f(x) with respect to xx on both sides we get:
ddxf(x)=ddxsinx+ddxsinxcosx\dfrac{d}{dx}f(x)=\dfrac{d}{dx}\sin x+\dfrac{d}{dx}\sin x\cdot \cos x
The product rule always says that the derivative of fg=fg+fgfg=fg'+f'g
Hence,f(x)=cosx+sinxddxcosx+cosxddxsinxf'(x)=\cos x+\sin x\dfrac{d}{dx}\cos x+\cos x\dfrac{d}{dx}\sin x
f(x)=cosx+sinx(sinx)+cosx(cosx)f'(x)=\cos x+\sin x(-\sin x)+\cos x(\cos x)
f(x)=cosxsin2x+cos2xf'(x)=\cos x-{{\sin }^{2}}x+{{\cos }^{2}}x
Now we know that cos2x=cos2xsin2x\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x
So, f(x)=cosx+cos2xf'(x)=\cos x+\cos 2x
We also know that cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1, putting the value we will get:
f(x)=cosx+2cos2x1f'(x)=\cos x+2{{\cos }^{2}}x-1
We may write cosx\cos x as 2cosxcosx2\cos x-\cos x
So, f(x)=2cosxcosx+2cos2x1f'(x)=2\cos x-\cos x+2{{\cos }^{2}}x-1
f(x)=2cosx+2cos2xcosx1f'(x)=2\cos x+2{{\cos }^{2}}x-\cos x-1
Taking 2cosx2\cos x and 1-1 in common we get:
f(x)=2cosx(cosx+1)1(cosx+1)f'(x)=2\cos x(\cos x+1)-1(\cos x+1)
f(x)=(2cosx1)(cosx+1)f'(x)=(2\cos x-1)(\cos x+1)
Equating each term to zero we get:
2cosx1=02\cos x-1=0
cosx=12\cos x=\dfrac{1}{2}
And cosx+1=0\cos x+1=0
cosx=1\cos x=-1
Value of xx at cosx=12\cos x=\dfrac{1}{2}
cosπ3=cos12\cos \dfrac{\pi }{3}=\cos \dfrac{1}{2}
cosx=cosπ3\cos x=\cos \dfrac{\pi }{3}
x=π3x=\dfrac{\pi }{3}
Value of xx at cosx=1\cos x=-1
cosπ=1\cos \pi =-1
cosx=cosπ\cos x=\cos \pi
x=πx=\pi
x=π3,π\Rightarrow x=\dfrac{\pi }{3},\pi
Again differentiating f(x)f'(x) with respect to xxon both sides
ddxf(x)=ddx(2cos2x+cosx1)\dfrac{d}{dx}f'(x)=\dfrac{d}{dx}(2{{\cos }^{2}}x+\cos x-1)
ddxf(x)=ddx2cos2x+ddxcosxddx1\dfrac{d}{dx}f'(x)=\dfrac{d}{dx}2{{\cos }^{2}}x+\dfrac{d}{dx}\cos x-\dfrac{d}{dx}1
f(x)=4cos(x)sinxsinxf''(x)=-4\cos (x)\sin x-\sin x
Putting the values of xx in f(x)f''(x)
f(x)x=π3=4cos(π3)sin(π3)sin(π3){{\left. f''(x) \right|}_{x=\dfrac{\pi }{3}}}=-4\cos (\dfrac{\pi }{3})\sin (\dfrac{\pi }{3})-\sin (\dfrac{\pi }{3})
=4×12×3232=-4\times \dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3}}{2}
=332=-\dfrac{3\sqrt{3}}{2}
f(x)x=π=4cos(π)sin(π)sin(π){{\left. f''(x) \right|}_{x=\pi }}=-4\cos (\pi )\sin (\pi )-\sin (\pi )
=4×(1)×00=-4\times (-1)\times 0-0
=0=0
Hence it is cleared that the function has maximum value at x=π3x=\dfrac{\pi }{3}, as f(x)f''(x) is negative at x=π3x=\dfrac{\pi }{3}.
Hence putting the value of x=π3x=\dfrac{\pi }{3} in the given equation f(x)=sinx(1+cosx)f(x)=\sin x(1+\cos x)
So, f(π3)=sinπ3(1+cosπ3)f(\dfrac{\pi }{3})=\sin \dfrac{\pi }{3}(1+\cos \dfrac{\pi }{3})
=32(1+12)=\dfrac{\sqrt{3}}{2}(1+\dfrac{1}{2})
=334=\dfrac{3\sqrt{3}}{4}
=31×3124=\dfrac{{{3}^{1}}\times {{3}^{\dfrac{1}{2}}}}{4}
=31+124=\dfrac{{{3}^{1+\dfrac{1}{2}}}}{4}
=3324=\dfrac{{{3}^{\dfrac{3}{2}}}}{4}

So, the correct answer is “Option A”.

Note: You must remember that a function can have various maximum and minimum values and between every two maximum values there exists a minimum value or vice versa and if you want to identify the local maxima or minima of the given function, at first you should try to apply the first derivative test.