Solveeit Logo

Question

Mathematics Question on Application of derivatives

The maximum value of logxx\frac{log x}{x} is

A

11

B

2e\frac {2}{e}

C

ee

D

1e\frac{1}{e}

Answer

1e\frac{1}{e}

Explanation

Solution

Let y=logxxy = \frac{log\,x}{x}
On differentiating both sides w.r.t, xx, we get
dydx=xddxlogxlogxddxxx2\frac{dy}{dx} = \frac{x\frac{d}{dx} log\,x - log\,x \frac{d}{dx} \,x}{x^2}
=x1xlogx1x2= \frac{x\cdot \frac{1}{x} - log\,x\cdot 1}{x^2}
dydx=1logxx2...(i)\therefore \frac{dy}{dx} = \frac{1 - log\,x }{x^2} \,\,...(i)
For maximum or minimum values,
dydx=0\frac{dy}{dx} = 0
1logxx2=0\Rightarrow \frac{1- log \,x}{x^2} = 0
1logx=0\Rightarrow 1 - log \,x = 0
logx=0\Rightarrow log\,x = 0
x=ex = e
Now, differentiate E (i)(i) w.r.t. x'x' we get
d2ydx2=x2(1x)(1logx)2xx4\frac{d^2y}{dx^2} = \frac{x^2(-\frac{1}{x}) - (1 - log\,x) \cdot 2x}{x^4}
=x2x+2xlogxx4= \frac{-x - 2x + 2x \,log\,x}{x^4}
=3x+2xlogxx4= \frac{-3x + 2x\,log\,x}{x^4}
(d2ydx2)x=e=3e+2elogxe4\left(\frac{d^{2}y}{dx^{2}}\right)_{x =e} = \frac{-3e + 2e\, log \,x}{e^{4}}
=3e+2ee4= \frac{-3e+2e}{e^{4}}
=ee4=1e3<0= -\frac{e}{e^{4}} = -\frac{1}{e^{3}} < 0
y=logxx\therefore y = \frac{log x}{x} is maximum at x=ex = e
ymax=logee=1e\Rightarrow y_{max} = \frac{log\, e}{e} = \frac{1}{e}