Question
Mathematics Question on Application of derivatives
The maximum value of xlogx is
A
1
B
e2
C
e
D
e1
Answer
e1
Explanation
Solution
Let y=xlogx
On differentiating both sides w.r.t, x, we get
dxdy=x2xdxdlogx−logxdxdx
=x2x⋅x1−logx⋅1
∴dxdy=x21−logx...(i)
For maximum or minimum values,
dxdy=0
⇒x21−logx=0
⇒1−logx=0
⇒logx=0
x=e
Now, differentiate E (i) w.r.t. ′x′ we get
dx2d2y=x4x2(−x1)−(1−logx)⋅2x
=x4−x−2x+2xlogx
=x4−3x+2xlogx
(dx2d2y)x=e=e4−3e+2elogx
=e4−3e+2e
=−e4e=−e31<0
∴y=xlogx is maximum at x=e
⇒ymax=eloge=e1