Solveeit Logo

Question

Mathematics Question on Maxima and Minima

The maximum value of Logxx\frac{Log \, x}{x} in (2,)(2, \infty) is

A

11

B

2e\frac{2}{e}

C

ee

D

1e\frac{1}{e}

Answer

1e\frac{1}{e}

Explanation

Solution

Let y=logxxy=\frac{\log x}{x}
On differentiating w.r.t. xx, we get
dydx=x1xlogx.1x2=1logxx2\frac{d y}{d x}=\frac{x \cdot \frac{1}{x}-\log x .1}{x^{2}}=\frac{1-\log x}{x^{2}}
For maxima, put dydx=0\frac{d y}{d x}=0
1logxx2=0\Rightarrow \,\,\,\,\, \frac{1-\log x}{x^{2}}=0
logx=1\Rightarrow\,\,\,\,\, \log x=1
xe\Rightarrow \,\,\,\,\,x-e
Now, d2ydx2=x2(1x)(1logx)2x(x2)2\,\,\,\,\,\frac{d^{2} y}{d x^{2}}=\frac{x^{2}\left(-\frac{1}{x}\right)-(1-\log x) 2 x}{\left(x^{2}\right)^{2}}
At x=e,d2ydx20x=e, \frac{d^{2} y}{d x^{2}} \leq 0, maxima
\therefore\,\,\,\,\, The maximum value at x=ex=e is
y=logee=1ey=\frac{\log e}{e}=\frac{1}{e}