Question
Mathematics Question on Maxima and Minima
The maximum value of xLogx in (2,∞) is
A
1
B
e2
C
e
D
e1
Answer
e1
Explanation
Solution
Let y=xlogx
On differentiating w.r.t. x, we get
dxdy=x2x⋅x1−logx.1=x21−logx
For maxima, put dxdy=0
⇒x21−logx=0
⇒logx=1
⇒x−e
Now, dx2d2y=(x2)2x2(−x1)−(1−logx)2x
At x=e,dx2d2y≤0, maxima
∴ The maximum value at x=e is
y=eloge=e1