Question
Question: The maximum value of f(x) = \[\dfrac{x}{{4 + x + {x^2}}}\] on \[[ - 1,1]\] is...
The maximum value of f(x) = 4+x+x2x on [−1,1] is
Solution
A derivative basically finds the slope of a function. First, we need to differentiate the given function. Let f1(x)=0 and we will get critical numbers. And, then we need to find the second derivative and apply these critical numbers to it. To find the maximum and minimum value we need to apply those x values in the original function.
Complete step by step answer:
Given the function as below,
f(x)=4+x+x2xand the range is given as[−1,1].
Differentiating the given function w.r.t x, we get,
f1(x)=(4+x+x2)2(4+x+x2)dxdx−xdxd(4+x+x2)
Since, f1(x)=0. We will use this and we will get,
⇒(4+x+x2)2(4+x+x2)dxdx−xdxd(4+x+x2)=0
⇒4+x+x2−x(1+2x)=0
⇒x2+x+4−2x2−x=0
⇒x2−2x2+4=0
⇒−x2+4=0
⇒4=x2
⇒x2=4
⇒x=±2
So, we have two values of x.
-2x.
i.e. -2<-1 and 2>1
To distinguish the values of x as the point of maximum or minimum, we need a second derivative of the function.
f1(x)=(x2+x+4)2−x2+4
⇒f11(x)=(x2+x+4)3(x2+x+4)2dxd(−x2+4)−(−x2+4)dxd(x2+x+4)2
⇒f11(x)=(x2+x+4)3(x2+x+4)2(−2x)+(x2+4)(2)(x2+x+4)(2x+1)
Divide numerator and denominator by(x2+x+4), we will get,
f11(x)=(x2+x+4)2(x2+x+4)(−2x)+(x2+4)(4x+2)
⇒f11(x)=(x2+x+4)2(x2+x+4)(−2x)+(x2+4)(4x+2)
Substituting the value ofx=−1, we will get,
f11(−1)=((−1)2+(−1)+4)(−2(−1))+((−1)2+4)(4(−1)+2)