Solveeit Logo

Question

Question: The maximum value of \(\cos^{2}\left( \frac{\pi}{3} - x \right) - \cos^{2}\left( \frac{\pi}{3} + x \...

The maximum value of cos2(π3x)cos2(π3+x)\cos^{2}\left( \frac{\pi}{3} - x \right) - \cos^{2}\left( \frac{\pi}{3} + x \right) is

A

32- \frac{\sqrt{3}}{2}

B

12\frac{1}{2}

C

32\frac{\sqrt{3}}{2}

D

32\frac{3}{2}

Answer

32\frac{\sqrt{3}}{2}

Explanation

Solution

cos2(π3x)cos2(π3+x)\cos^{2}\left( \frac{\pi}{3} - x \right) - \cos^{2}\left( \frac{\pi}{3} + x \right)

={cos(π3x)+cos(π3+x)}{cos(π3x)cos(π3+x)}= \left\{ \cos\left( \frac{\pi}{3} - x \right) + \cos\left( \frac{\pi}{3} + x \right) \right\}\left\{ \cos\left( \frac{\pi}{3} - x \right) - \cos\left( \frac{\pi}{3} + x \right) \right\}

={2cosπ3cosx}{2sinπ3sinx}=sin2π3sin2x=32sin2x= \left\{ 2\cos\frac{\pi}{3}\cos x \right\}\left\{ 2\sin\frac{\pi}{3}\sin x \right\} = \sin\frac{2\pi}{3}\sin 2x = \frac{\sqrt{3}}{2}\sin 2x

Its maximum value is 32,{1sin2x1}\frac{\sqrt{3}}{2},\{ - 1 \leq \sin 2x \leq 1\}.