Question
Question: The maximum value of \(a\cos x + b\sin x\)is...
The maximum value of acosx+bsinxis
A
a+b
B
a−b
C
∣a∣+∣b∣
D
(a2+b2)1/2
Answer
(a2+b2)1/2
Explanation
Solution
Let f(x)=acosx+bsinx
Suppose thata=rsinθand b=rcosθ i.e.,r=a2+b2
Now, f(x)=rsinθcosx+rcosθsinx =a2+b2{sin(θ+x)}
But −1≤sin(θ+x)≤1⇒−r≤rsin(θ+x)≤r
⇒−a2+b2≤a2+b2sin(θ+x)≤a2+b2
Thus, maximum value of f(x) is a2+b2.