Solveeit Logo

Question

Question: The maximum value of \(a\cos x + b\sin x\)is...

The maximum value of acosx+bsinxa\cos x + b\sin xis

A

a+ba + b

B

aba - b

C

a+b|a| + |b|

D

(a2+b2)1/2(a^{2} + b^{2})^{1/2}

Answer

(a2+b2)1/2(a^{2} + b^{2})^{1/2}

Explanation

Solution

Let f(x)=acosx+bsinxf(x) = a\cos x + b\sin x

Suppose thata=rsinθa = r\sin\thetaand b=rcosθb = r\cos\theta i.e.,r=a2+b2r = \sqrt{a^{2} + b^{2}}

Now, f(x)=rsinθcosx+rcosθsinxf(x) = r\sin\theta\cos x + r\cos\theta\sin x =a2+b2{sin(θ+x)}= \sqrt{a^{2} + b^{2}}\{\sin(\theta + x)\}

But 1sin(θ+x)1rrsin(θ+x)r- 1 \leq \sin(\theta + x) \leq 1 \Rightarrow - r \leq r\sin(\theta + x) \leq r

a2+b2a2+b2sin(θ+x)a2+b2\Rightarrow - \sqrt{a^{2} + b^{2}} \leq \sqrt{a^{2} + b^{2}}\sin(\theta + x) \leq \sqrt{a^{2} + b^{2}}

Thus, maximum value of f(x)f(x) is a2+b2\sqrt{a^{2} + b^{2}}.