Solveeit Logo

Question

Question: The Maximum value of \(4{\sin ^2}x - 12\sin x + 7\) is (A) 25 (B) 4 (C) Does not exist (...

The Maximum value of 4sin2x12sinx+74{\sin ^2}x - 12\sin x + 7 is
(A) 25
(B) 4
(C) Does not exist
(D) None of the above

Explanation

Solution

First we have to change the equation in (a+b)2{(a + b)^2} and we know that the value of sinx\sin x is varies from 1 - 1 to 11 by using this concept we can solve this question.

Complete step-by-step answer:
It is given that we have to find the maximum value of 4sin2x12sinx+74{\sin ^2}x - 12\sin x + 7
Now we take common 44 from 4sin2x+12sinx4{\sin ^2}x + 12\sin x
we get : 4(sin2x3sinx)+74({\sin ^2}x - 3\sin x) + 7
Now we have to make this equation in (ab)2{(a - b)^2} form
So we have multiple and divide 22 in the term 3sinx3\sin x and
Add and subtract (32)2{\left( {\dfrac{3}{2}} \right)^2} in the equation as :
4(sin2x2×32×sinx+(32)2(32)2)+74\left( {{{\sin }^2}x - 2 \times \dfrac{3}{2} \times \sin x + {{\left( {\dfrac{3}{2}} \right)}^2} - \left( {\dfrac{3}{2}} \right)}^2 \right) + 7

We know that (ab)2{(a - b)^2} =a22ab+b2 = {a^2} - 2ab + {b^2}
So it is changes as [4((sinx32)294)+7]\left[ {4\left( {{{\left( {\sin x - \dfrac{3}{2}} \right)}^2} - \dfrac{9}{4}} \right) + 7} \right]
Now solving further we get [(4(sinx+32)29)+7]\left[ {\left( {4{{\left( {\sin x + \dfrac{3}{2}} \right)}^2} - 9} \right) + 7} \right]
And finally we get
[4(sinx32)22]\left[ {4{{\left( {\sin x - \dfrac{3}{2}} \right)}^2} - 2} \right]
Now we have to find out the maximum value of this
We know that
1sinx1- 1 \leqslant \sin x \leqslant 1 for any value of xx
Subtract 32\dfrac{3}{2} in it
132sinx32132- 1 - \dfrac{3}{2} \leqslant \sin x - \dfrac{3}{2} \leqslant 1 - \dfrac{3}{2}
or
52sinx3212- \dfrac{5}{2} \leqslant \sin x - \dfrac{3}{2} \leqslant - \dfrac{1}{2}
On squaring all the terms the sign of fraction will change ;
14(sinx32)2254\dfrac{1}{4} \leqslant {\left( {\sin x - \dfrac{3}{2}} \right)^2} \leqslant \dfrac{{25}}{4}
On multiplying by 44 we get
14(sinx32)2251 \leqslant 4{\left( {\sin x - \dfrac{3}{2}} \right)^2} \leqslant 25
Now subtract 22 from all sides
14(sinx32)2223- 1 \leqslant 4{\left( {\sin x - \dfrac{3}{2}} \right)^2} - 2 \leqslant 23
Hence the maximum value of [4(sinx32)22]\left[ {4{{\left( {\sin x - \dfrac{3}{2}} \right)}^2} - 2} \right] is 2323
or maximum value of 4sin2x12sinx+74{\sin ^2}x - 12\sin x + 7 is 2323

So, the correct answer is “Option D”.

Note: Always be careful when you multiply negative sign in inequality the sign of equation is changed .Same method will be used if we replace the sinx\sin x to cosx\cos x or If question is given in any other form like tanx,cotx,cosecx,\tan x,\cot x,\cos ecx, try to convert it into in sinx\sin x and cosx\cos x form .