Solveeit Logo

Question

Question: The maximum value of \(3\cos\theta + 4\sin\theta\) equal to...

The maximum value of 3cosθ+4sinθ3\cos\theta + 4\sin\theta equal to

A

3

B

4

C

5

D

None of these

Answer

3

Explanation

Solution

cos2A+cos2Bcos2C=cos2A+(1sin2B)cos2C=1+[cos2Asin2B]cos2C=1+cos(A+B)cos(AB)cos2C=1+cos(πC)cos(AB)cos2C=1cosC[cos(AB)+cosC]\cos^{2}A + \cos^{2}B - \cos^{2}C = \cos^{2}A + (1 - \sin^{2}B) - \cos^{2}C = 1 + \lbrack\cos^{2}A - \sin^{2}B\rbrack - \cos^{2}C = 1 + \cos(A + B)\cos(A - B) - \cos^{2}C = 1 + \cos(\pi - C)\cos(A - B) - \cos^{2}C = 1 - \cos C\lbrack\cos(A - B) + \cos C\rbrack

=1cosC[cos(AB)+cos{π(A+B)}]=1cosC[cos(AB)cos(A+B)]=1cosC[2sinAsinB]=12sinAsinBcosC= 1 - \cos C\lbrack\cos(A - B) + \cos\{\pi - (A + B)\}\rbrack = 1 - \cos C\lbrack\cos(A - B) - \cos(A + B)\rbrack = 1 - \cos C\lbrack 2\sin A\sin B\rbrack = 1 - 2\sin A\sin B\cos C.