Question
Question: The maximum value of \(3\cos\theta - 4\sin\theta\) is...
The maximum value of 3cosθ−4sinθ is
A
3
B
4
C
5
D
None of these
Explanation
Solution
Let 3=rcosα,4=rsinα, so r=5
f(θ)=r.(cosαcosθ+sinαsinθ)=5.cos(θ−α)
∴ The maximum value of f(θ)=5.1=5.
{Since the maximum value of cos(θ−α)=1}.
Aliter : As we know that, the maximum value of
asinθ+bcosθis +a2+b2 and the minimum value is
−a2+b2. Therefore, the maximum value is
(3cosθ+4sinθ)=+32+(−4)2=5 and the minimum value is – 5.