Solveeit Logo

Question

Question: The maximum value of \(3\cos\theta - 4\sin\theta\) is...

The maximum value of 3cosθ4sinθ3\cos\theta - 4\sin\theta is

A

3

B

4

C

5

D

None of these

Explanation

Solution

Let 3=rcosα,4=rsinα,3 = r\cos\alpha,4 = r\sin\alpha, so r=5r = 5

f(θ)=r.(cosαcosθ+sinαsinθ)=5.cos(θα)f(\theta) = r.(\cos\alpha\cos\theta + \sin\alpha\sin\theta) = 5.\cos(\theta - \alpha)

\therefore The maximum value of f(θ)=5.1=5.f(\theta) = 5.1 = 5.

{Since the maximum value of cos(θα)=1\cos(\theta - \alpha) = 1}.

Aliter : As we know that, the maximum value of

asinθ+bcosθa\sin\theta + b\cos\thetais +a2+b2+ \sqrt{a^{2} + b^{2}} and the minimum value is

a2+b2- \sqrt{a^{2} + b^{2}}. Therefore, the maximum value is

(3cosθ+4sinθ)=+32+(4)2=5(3\cos\theta + 4\sin\theta) = + \sqrt{3^{2} + ( - 4)^{2}} = 5 and the minimum value is – 5.